

(не заполнять)
Подпись

	«Утверждаю	>>>
Председатель	оргкомитета	олимпиады

Национальный исследовательский ядерный университет «МИФИ»

Всероссийский конкурс научных работ школьников «Юниор», Секция «Химия», 10 класс

1. Водный раствор натриевой соли одноосновной карбоновой кислоты подвергли электролизу с инертными электродами. На аноде образовались газообразный и жидкий продукты. При пропускании газообразного продукта через промывную склянку, заполненную концентрированным раствором КОН, масса, которого равна 64,27 г. После окончания электролиза масса жидкости в промывной склянке возросла до 68,67 г. Напишите уравнение реакции электролиза.

Определите:

- а) неизвестный жидкий продукт, образовавшийся на аноде. Если массовая доля углерода в нем 84,21%. Назовите его.
- б) массу жидкого продукта электролиза.

Решение

Уравнение анодной реакции электролиза (реакция Кольбе) на катоде: $2H^++2e=H_2$,

на аноде: $2C_nH_{2n+1}COO^ -2e = C_nH_{2n+1} - C_nH_{2n+1} + 2CO_2$

а) Определим состав образовавшейся жидкости, т.е. углеводорода: $n(C):n(H)=\mathcal{O}(C)/M(C):\mathcal{O}(H)/M(H);$ n(C):n(H)=0.8421/12:0.1579/1=7.02:15.79=1:2.25

Приведем к целочисленному соотношению. Простейшая формула углеводорода C_4H_9 . Такого углеводорода не существует. При удвоении индексов получаем формулу C_8H_{18} - это октан. Октан при нормальных условиях — жидкое вещество

б) Определим массу образовавшегося октана.

По уравнение электролиза на два моля ${\rm CO_2}$ на аноде образуется 1 моль углеводорода

$$2C_4H_9COONa + 2H_2O = H_2\uparrow + 2CO_2\uparrow + C_8H_{18} + 2NaOH.$$

Рассчитаем количество образовавшегося CO_2 , октана и массу октана $n(CO_2) = (68,67-64,27)/44 = 0,1$ моль

 $n(C_8H_{18}) = 0.05$ моль

$$m(C_8H_{18}) = n(C_8H_{18}) \cdot M(C_8H_{18}) = 5,7 \text{ } \Gamma.0,05 \cdot 114,23 = 5,7 \text{ } \Gamma.$$

Ответ: $C_8H_{18} = \text{октан}, \ m(C_8H_{18}) = 5,7 \ \Gamma.$

2. Два открытых сосуда поместили в герметичный контейнер. В первом сосуде находилось 400 г 25 % раствора сульфата магния, а во втором — 20 г безводного сульфата натрия. Через некоторое время в первом сосуде стали выпадать кристаллы. Определите формулу кристаллов и найдите массу кристаллов, выпавших в первом сосуде после того как вес второго сосуда перестал меняться. Растворимость сульфата магния примите равной 35,5 г на 100 г воды.

Решение:

Вода из первого сосуда испаряется, а безводная соль поглощает эту воду, превращаясь в кристаллогидрат. Исходный раствор сульфата магния становится пересыщенным из него выпадают кристаллы $MgSO_4 \cdot 7H_2O$.

а) Определим массу растворенной соли $MgSO_4$ в первом сосуде (m_1) :

$$m_1 = 0.25 \cdot 400 = 100 \text{ }\Gamma.$$

В первом сосуде находится ненасыщенный раствор сульфата магния, так как в 300 г воды могут раствориться $35.5 \cdot 3 = 106.5$ г соли.

б) Определим массу воды, которую поглотит безводный сульфат натрия, превращаясь в 10-водный кристаллогидрат Na₂SO₄·10 H₂O:

$$m(воды) = 10 M(H2O) \cdot 20/142 = 180 \cdot 20/142 = 25,34 г$$

в) В результате испарения воды и достижения состояния насыщения из раствора сульфата магния будут выпадать кристаллогидраты $MgSO_4 \cdot 7H_2O$

 $M(MgSO_4) = 120$ г/моль, $M(MgSO_4 \cdot 7H_2O) = 246$ г/моль, Масса насыщенного раствора, после выпадения кристаллов $MgSO_4 \cdot 7H_2O$:

$$m(\text{нас.p.}) = 400 - 25,34 - x$$
, где x – масса кристаллов.

г) Масса растворенного $MgSO_4$ в растворе после выпадения кристаллов (m_2) :

$$m_2 = 100 - x \cdot 120/246$$

Учитывая, что 135,5 г насыщенного раствора содержит 35.5 г MgSO₄ в растворе, получим уравнение для расчета m_2 :

$$m_2$$
= m (нас.р.)·35,5/135,5 = $100 - x \cdot 120/246$, $(400 - 25,34 - x) \cdot 35,5/135 = $100 - x \cdot 120/246$$

Отсюда масса, выпавших кристаллов MgSO₄·7H₂O (x):

$$m(кристаллов)) = x = 8,16 г$$

Ответ: MgSO₄·7H₂O, 8.16 г.

3. Определите состав молекулы ЭС1*n*, массовая доля хлора, в котором 66.20%. Сделайте предположение о типе гибридизации атомных орбиталей атома Э и пространственной конфигурации соединения.

Решение.

1)Выразим массовую долю хлора, обозначив молярную массу атомов Э через Мэ:

$$\omega(\text{Cl}) = n \cdot 35,5 / (n \cdot 35,5 + \text{M}_{2}) = 0.6620;$$

2) Найдем соотношение между Мэ и n, то есть сочетание массы и валентности в соединении так как n - это валентность элемента.

$$35.5n = 0.6620 \cdot M_{\rm P} + 23.501n,$$

$$11.999 \ n = 0.6620 \cdot M_{\text{P}}, M_{\text{P}} = 18.125 \ n.$$

Поскольку n — валентность элемента, и, соответственно, целое число, можно определить массу атомов Э подбором, сопоставляя значения с молярными массами атомов элементов по периодической системе.

n	Мэ	n	Мэ
1	18,125	4	72,500
2	36,250	5	90.625
3	54,325	6	108.030

Сочетание массы и валентности подходит для германия ($M_{Ge} = 72.59$). Элементы 5-8 групп с переменной валентностью не дают данного сочетания. Исследуемое соединение — тетрахлорид германия. 2)В соответствии с электронным строением Ge $_{32}$ Ge[] $_{4s}^{24}$ p² или $_{32}$ Ge*[] $_{4s}^{14}$ p³ в гибридизации могут участвовать орбитали с $_{s}$ - и $_{p}$ -валентными электронами, это $_{s}$ - гибридизация.

Ответ: GeCl₄, тетраэдрическая конфигурация, sp³ –гибридизация.

Задание 1. На каждый вопрос даны четыре варианта ответов. Необходимо выбрать только <u>один</u> правильный и внести его в матрицу.

1. К сложным соцветиям относится:

- а) головка клевера;
- б) кисть ландыша;
- в) метелка проса;
- г) початок белокрыльника.

2. Соцветие тычиночных цветков кукурузы:

- а) метелка из колосков;
- б) початок;
- в) зонтик;
- г) сложный колос

3. Для каких растений в семени характерен щиток?

- а) томат;
- б) сосна;
- в) тюльпан;
- г) пшеница.

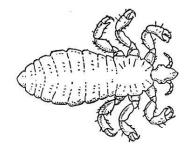
4. Какие растения формируют корневую систему без главного корня?

- а) ламинария;
- б) сфагнум;
- в) щитовник мужской;
- г) гингко.

5. Водные растения с погруженными в воду листьями:

- а) имеют устьица на верхней стороне листа
- б) имеют устьица на нижней стороне листа;

- в) устьица распределены равномерно между верхней и нижней сторонами;
- г) не имеют устьиц.


6. У бычьего цепня имеются специальные органы:

- а) дыхания и выделения;
- б) только для дыхания;
- в) только для выделения;
- г) ни для дыхания, ни для выделения.

7. Какие органы развиваются из мезодермы у плоских червей?

- а) мышцы и эпителий;
- б) мышцы и паренхима;
- в) кишечник и паренхима;
- г) кишечник и мышцы.

8. На рисунке изображена:

- а) личинка клеща;
- б) личинка блохи;
- в) куколка блохи;
- г) взрослая вошь

9. Двигательные нейроны (мотонейроны), активация которых вызывает сокращение скелетных мышц, расположены:

- а) в задних корешках спинного мозга;
- б) в передних корешках;
- в) в задних рогах спинного мозга;
- г) передних рогах

10. Половые гормоны у млекопитающих являются:

- а) стероидами;
- б) гетероциклическими основаниями;
- в) белками;
- г) производными тирозина.

11. Гипофиз функционально связан главным образом с:

- а) эпифизом;
- б) таламусом;
- в) гипоталамусом;
- г) эпиталамусом.

12. Ведущая роль в поддержании постоянной температуры тела принадлежит терморецепторам, расположенным в:

- а) стенках аорты;
- б) гипоталамусе;
- в) гипофизе;
- г) продолговатом мозге.

13. Вторичная капиллярная сеть у млекопитающих есть в:

- а) печени;
- б) сердце;
- в) мозжечке;
- г) легких.

14. Какая из перечисленных органелл встречается и в прокариотической и в эукариотической клетке:

- а) нуклеоид;
- б) митохондрии;
- в) клеточная стенка;
- г) цитоскелет.

15. Клетки растений, в отличии от клеток животных, не содержат:

- а) центриоли;
- б) центральную вакуоль;
- в) митохондрии;
- г) рибосомы.

16. Какие органеллы клетки окружены одной мембраной:

- а) митохондрии;
- б) лизосомы;
- в) ядро;
- г) микротрубочки;

17. Нити митотического веретена представляют собой

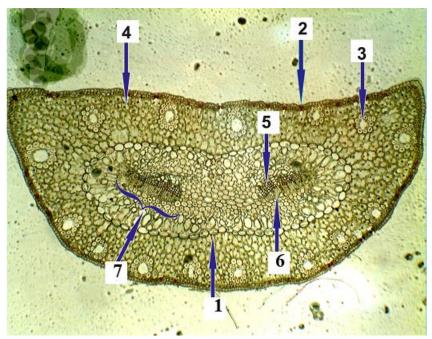
- а) микрофиламенты;
- б) целлюлозные волокна;
- в) промежуточные филаменты;
- г) микротрубочки.

18. К полимерам относятся

- а) целлюлоза, сахароза, крахмал;
- б) инсулин, гликоген, холестерин;
- в) крахмал, инсулин, целлюлоза;
- г) кератин, лецитин, гликоген.

19. Женская гетерогаметность характерна для

- а) рыб;
- б) птиц;
- в) млекопитающих;
- г) все ответы верны.


20. К анализирующему скрещиванию относят скрещивание типа

- a) AaBB x AaBb;
- б) AABb x Aabb;
- в) Aabb x aaBb;
- г) ни один из ответов не верен.

Задание 2. Перед Вами срез органа растения.

1. Какой это орган?

- 2. К какому классу относится это растение?
- 3. Выберите из списка названия структур, соответствующие цифрам на рисунке.

Список структур: ксилема; флоэма; камбий; сосудисто-волокнистый пучок; эндодерма; смоляной ход; губчатый мезофилл; устьице; эпидермис; перицикл.

Задание 3.

У крыс доминантный аллель гена R вызывает чёрный цвет шерсти. Доминантный аллель другого гена A вызывает жёлтый цвет шерсти. Гены находятся на разных хромосомах. Если доминантные аллели двух генов встречаются совместно, они взаимодействуют с образованием серого окраски шерсти. При взаимодействии двух рецессивных аллелей в гомозиготным состоянии возникает кремовая окраска.

Скрестили самца из чистой линии с чёрным цветом шерсти и самку из чистой линии с жёлтым цветом шерсти. Все потомки первого поколения были серого цвета. Во втором поколении были получены крысы чёрного, серого, жёлтого и кремового цвета. В каком

соотношении присутствовали крысы с разной окраской шерсти во втором поколении?

Из второго поколения взяли серого самца и желтую самку. От них было получено потомство (третье поколение), в котором было 14 желтых, 15 серых, 5 черных и 6 кремовых крыс. Какими были генотипы самца и самки в этом скрещивании? Какая часть серых самок третьего поколения при скрещивании с кремовыми самцами будет иметь в потомстве кремовых крысят?

Лист ответовФамилия И.О.	
ШИФР	

Задание 1

	a	б	В	Γ		a	б	В	Γ
1					11				
2					12				
3					13				
4					14				
5					15				
6					16				
7					17				
8					18				
9					19				
10					20				

Задани	e 2.	
Орган:		
Класс ј	растения:	

Номер	Название структуры
1	
2	
3	
4	
5	
6	
7	

Задание 3

- 1. чёрные : серые : жёлтые : кремовые = : : : :
- 2. серый самец во втором скрещивании, генотип жёлтая самка во втором скрещивании, генотип —
- 3. _____серых самок второго поколения дадут кремовых крысят.

Ответы

Задание 1 (по 0,25 баллов)

		-				_	_		
	a	б	В	Γ		a	б	В	Γ
1			X		11			X	
2	X				12		X		
3				X	13	X			
4			X		14			X	
5				X	15	X			
6			X		16		X		
7		X			17				X
8				X	18			X	
9		X			19		X		
10	X				20				X

Σ= 5 баллов

Задани	ıe	2

Орган:_хвоя или хвоинка	(2 балла)
Класс растения: Хвойные	(2
болдо)	

Номер	Название структуры
1	Эндодерма
2	Устьице
3	Смоляной ход
4	Губчатый мезофилл
5	Ксилема
6	Флоэма
7	Сосудисто-волокнистый пучок

(по 0,5 балла за каждую правильную структуру)

Σ= 7,5 баллов

Задание 3

- 1. чёрные : серые : жёлтые : кремовые = 3 : 9 : 3 : 1 (**3 балла**)
- 2. серый самец во втором скрещивании, генотип RrAa (3 балла) жёлтая самка во втором скрещивании, генотип –rrAa(3 балла)
- 3. _2/3, или 0,67_серых самок третьего поколения дадут кремовых крысят (3,5 балла)

Или 4/9 серых самок второго поколения дадут кремовых крысят

Σ= 12,5 баллов