ОЛИМПИАДА ШКОЛЬНИКОВ «Робофест» по ФИЗИКЕ ОТБОРОЧНЫЙ ЭТАП 2020-2021 года, вопросы по физике. 10 класс. ПРИМЕР ВАРИАНТА: ВОЗМОЖНЫЕ РЕШЕНИЯ И КРИТЕРИИ

1. Два одинаковых шарика, выпущенных из катапульт, столкнулись «лоб в лоб» в тот момент, когда оба летели горизонтально. Непосредственно перед ударом величины скоростей шаров равнялись $v_1 = 5\,\mathrm{m/c}$ и $v_2 = 2\,\mathrm{m/c}$. Какой после удара стала величина скорости второго шара (то есть того, который до удара двигался со скоростью 2 м/c)? Удар считайте упругим. Ответ запишите в м/c, с точностью до целого значения.

Возможное решение: После лобового упругого удара тела движутся вдоль той же прямой, что и перед ударом (ось x). Их скорости до и после удара (в проекциях на ось x) связаны законами сохранения энергии и импульса. При одинаковых массах эти законы приводят к уравнениям:

$$\left\{ \frac{mv_1' + mv_2' = mv_1 + mv_2}{\frac{mv_1'^2}{2} + \frac{mv_2'^2}{2}} \right\} \Rightarrow \left\{ \frac{v_1' + v_2' = v_1 + v_2}{v_1'^2 + v_2'^2 = v_1^2 + v_2^2} \right\}.$$

Ясно, что эта система имеет два решения относительно «новых» скоростей, и они легко угадываются: это «старые» скорости $v_1' = v_1$ и $v_2' = v_2$ (соответствует отсутствию удара) или «обмен скоростями» $v_1' = v_2$ и $v_2' = v_1$ (если удар произошел). Таким образом, скорость второго шара после удара равна скорости первого шара до удара.

МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
5	5	100%

- 2. Рассмотрим случай, когда эти шары перед ударом летели горизонтально точно навстречу друг другу, но упругий удар не был лобовым, и первый шар (летевший со скоростью $v_1 = 5 \, \text{m/c}$) в результате удара отклонился от направления своего движения до удара на угол $\alpha = 60^{\circ}$. Скорость второго шара перед ударом по-прежнему $v_2 = 2 \, \text{m/c}$.
 - 2.1. Найдите величину скорости первого шара сразу после удара. Ответ запишите в м/с, с точностью до десятых.
 - 2.2. Найдите угол отклонения второго шара (от направления своего движения до удара). Ответ запишите в градусах, с точностью до целого значения.

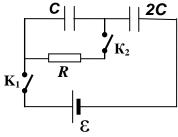
Возможное решение: В этом случае движение уже не является одномерным, и уравнения для «новых» скоростей нужно записывать в векторной форме (или в проекциях на координатные оси). Например:

Учтем, что до удара шары летели навстречу друг другу: запишем, что $\vec{v}_2 = -0.4 \cdot \vec{v}_1$. Тогда $\vec{v}_2' = 0.6 \cdot \vec{v}_1 - \vec{v}_1'$ Возведем это соотношение в квадрат (учитывая, что $\vec{v}_1 \cdot \vec{v}_1' = v_1 v_1' \cos(\alpha) = \frac{1}{2} v_1 v_1'$): $v_2'^2 = 0.36 v_1^2 + v_1'^2 - 0.6 v_1 v_1'$. Подставляя сюда выражение для $v_2'^2$ из закона сохранения энергии, получаем уравнение для скорости первого шара после удара: $v_1'^2 - 0.3 v_1 v_1' - 0.4 v_1^2 = 0$. Положительный корень этого уравнения $v_1' = 0.8 v_1 = 4$ м/с.

МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
10	4,0	100%
	4	90%

Найдем скорость второго шара после удара: $v_2'^2 = v_1^2 + v_2^2 - v_1'^2 = 0,52v_1^2$, то есть $v_2' = \frac{\sqrt{13}}{5}v_1 = \frac{\sqrt{13}}{2}v_2$. Перепишем закон сохранения импульса в другом виде (ясно, что

 $\vec{v}_1 = -2.5 \cdot \vec{v}_2$, $v_1'^2 = 4v_2^2$): $\vec{v}_2' + 1.5\vec{v}_2 = -\vec{v}_1'$. Возведем его в квадрат $v_2'^2 + 2.25v_2^2 + 3v_2v_2'\cos(\beta) = v_1'^2$ (где β — искомый угол поворота вектора скорости второго шара) и выразим β : $3\frac{\sqrt{13}}{2}v_2^2\cos(\beta) = -\frac{3}{2}v_2^2$, то есть $\beta = \arccos\left(-\frac{1}{\sqrt{13}}\right) \approx 106^\circ$.


МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
10	106	100%

3. Перед соревнованиями зал, где они будут проходить, проветрили, закрыли окна и двери, и включили нагревательные приборы. Когда температура установилась, климатическое панно, висящее в зале, что она равна $t=24^{\circ}\mathrm{C}$, но воздух очень сухой — относительная влажность равнялась r=18%. Для создания более комфортных условий увлажнители воздуха испарили m=7 кг воды. Температуру при этом сохранили неизменной. Какой стала относительная влажность воздуха в зале? Объем зала $V=1000\mathrm{m}^3$, молярная масса воды $\mu=18\mathrm{r/monb}$, универсальная газовая постоянная $R\approx8,31\mathrm{Дж/(monb\cdot K)}$. Давление насыщенных паров воды при температуре зала $p_\mu=2,99\,\mathrm{k\Pia}$. Ответ запишите в процентах, с точностью до целого значения.

Возможное решение: Из уравнения Менделеева-Клапейрона $pV = \frac{m_n}{\mu}RT$ можно выразить давление водяного пара через массу пара в зале $p = \frac{RT}{\mu V}m_n$. Давление пара можно определить по относительной влажности и давлению насыщенного пара $p = r \cdot p_n$. Поэтому $r = \frac{RT}{\mu p_n V}m_n$. Следовательно, увеличение относительной влажности при увеличении массы водяного пара $r' - r = (m'_n - m_n) \frac{RT}{\mu p_n V} \Rightarrow r' = r + m \frac{RT}{\mu p_n V} = 50\%$.

МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
10	50	100%
	49	70%
	51	70%

- 4. Перед сборкой схемы, изображенной на рисунке, оба конденсатора были разряжены. После сборки сначала замкнули ключ K_1 , а затем, спустя некоторое время K_2 . Величина $C = 30 \,\mathrm{mk\Phi}$, ЭДС источника $\mathcal{E} = 50 \,\mathrm{B}$, внутреннее сопротивление батареи и сопротивление соединительных проводов и контактов пренебрежимо мало.
 - 4.1. Какой заряд будет у конденсатора с большей емкостью после замыкания K_1 (до замыкания K_2)? Ответ дайте в мкКл, с точностью до целого значения.
 - 4.2. Какое количество теплоты выделится в резисторе R? Ответ дайте в мДж, с точностью до целого значения.

Возможное решение: После замыкания K_1 батарея конденсаторов общей емкостью $C_{oбщ} = \frac{2C \cdot C}{2C + C} = \frac{2}{3}C$ заряжается от источника до напряжения \mathcal{E} . Заряд каждого из конденсаторов $q = \frac{2}{3}C\mathcal{E} = 1000$ мкКл. На этой стадии ток через резистор не течет, и тепло в нем не выделяется.

МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
5	1000	100%
	1	50%

После замыкания K_2 конденсатор емкостью C разряжается через резистор, а конденсатор емкостью 2C дозаряжается до напряжения \mathcal{E} через тот же резистор. Поскольку все прочие сопротивления малы, практически все тепло выделяется именно в резисторе, и выделившееся количество теплоты равно разности работы источника и изменения энергии конденсаторов после замыкания K_2 : $Q_R \approx Q = A_{ucm} - \Delta E_C$. Работа источника вычисляется по величине протекшего через

него на второй стадии заряда:
$$\Delta q = 2C\mathcal{E} - \frac{2}{3}C\mathcal{E} = \frac{4}{3}C\mathcal{E}$$
, и поэтому $A_{ucm} = \mathcal{E} \cdot \Delta q = \frac{4}{3}C\mathcal{E}^2$.

Изменение энергии конденсаторов $\Delta E_C = (2C - C_{oбщ})\frac{\mathcal{E}^2}{2} = \frac{2}{3}C\mathcal{E}^2$. Таким образом, в резисторе

выделяется количество теплоты $Q_R \approx \frac{2}{3} C \mathcal{E}^2 = 50 \,\mathrm{MДж}.$

МАКСИМАЛЬНЫЙ БАЛЛ	ОТВЕТЫ	СТОИМОСТЬ
10	50	100%
	5	50%