Максимальное количество баллов - 100

Задача №1

1.1. Пусть x_1, x_2 – различные корни квадратного уравнения $x^2 + ax + 9 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 4$. Найдите a.

Ответ: -10

1.2. Пусть x_1 , x_2 – различные корни квадратного уравнения $x^2+ax+4=0$, причём $\sqrt{x_1}+\sqrt{x_2}=9$. Найдите a.

Ответ: -77

1.3. Пусть x_1, x_2 – различные корни квадратного уравнения $x^2 + ax + 25 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 10$. Найдите a.

Ответ: -90

1.4. Пусть x_1 , x_2 – различные корни квадратного уравнения $3x^2+ax+48=0$, причём $\sqrt{x_1}+\sqrt{x_2}=8$. Найдите a.

Ответ: -168

1.5. Пусть x_1 , x_2 – различные корни квадратного уравнения $2x^2 + ax + 18 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 3$. Найдите a.

Ответ: -6

1.6. Пусть x_1 , x_2 – различные корни квадратного уравнения $3x^2 + ax + 108 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 10$. Найдите a.

Ответ: -264

1.7. Пусть x_1 , x_2 – различные корни квадратного уравнения $5x^2 + ax + 45 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 5$. Найдите a.

Ответ: -95

1.8. Пусть x_1 , x_2 – различные корни квадратного уравнения $-x^2+ax-16=0$, причём $\sqrt{x_1}+\sqrt{x_2}=7$. Найдите a.

Ответ: 41

1.9. Пусть x_1 , x_2 – различные корни квадратного уравнения $-4x^2+ax-36=0$, причём $\sqrt{x_1}+\sqrt{x_2}=6$. Найдите a.

Ответ: 120

1.10. Пусть x_1 , x_2 – различные корни квадратного уравнения $-2x^2+ax-32=0$, причём $\sqrt{x_1}+\sqrt{x_2}=9$. Найдите a.

Ответ: 146

1.11. Пусть x_1 , x_2 – различные корни квадратного уравнения $-6x^2+ax-96=0$, причём $\sqrt{x_1}+\sqrt{x_2}=5$. Найдите a.

Ответ: 102

1.12. Пусть x_1 , x_2 – различные корни квадратного уравнения $x^2 + ax + 100 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 6$. Найдите a.

Ответ: -16

1.13. Пусть x_1, x_2 – различные корни квадратного уравнения $4x^2 + ax + 16 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 6$. Найдите a.

Ответ: -128

1.14. Пусть x_1, x_2 – различные корни квадратного уравнения $10x^2 + ax + 90 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 9$. Найдите a.

Ответ: -750

1.15. Пусть x_1, x_2 – различные корни квадратного уравнения $-2x^2 + ax - 72 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 11$. Найдите a.

Ответ: 218

1.16. Пусть x_1, x_2 – различные корни квадратного уравнения $x^2 + ax + 81 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 11$. Найдите a.

Ответ: -103

1.17. Пусть x_1 , x_2 – различные корни квадратного уравнения $-5x^2+ax-125=0$, причём $\sqrt{x_1}+\sqrt{x_2}=7$. Найдите a.

Ответ: 195

1.18. Пусть x_1, x_2 – различные корни квадратного уравнения $-3x^2 + ax - 108 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 9$. Найдите a.

Ответ: 207

1.19. Пусть x_1, x_2 – различные корни квадратного уравнения $2x^2 + ax + 72 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 6$. Найдите a.

Ответ: -48

1.20. Пусть x_1, x_2 – различные корни квадратного уравнения $4x^2 + ax + 36 = 0$, причём $\sqrt{x_1} + \sqrt{x_2} = 5$. Найдите a.

Ответ: -76

Задача №2

- 2.1. Выберите номера верных утверждений:
- 1. Любой треугольник можно разрезать на 4 равных треугольника.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 3. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 4. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 5. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

2.2. Выберите номера верных утверждений:

- 1. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 2. Любой треугольник можно разрезать на 4 равных треугольника.
- 3. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 4. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 5. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 234

2.3. Выберите номера верных утверждений:

- 1. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 2. Любой треугольник можно разрезать на 4 равных треугольника.
- 3. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 4. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 5. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 24

2.4. Выберите номера верных утверждений:

- 1. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 2. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 3. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 4. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 5. Любой треугольник можно разрезать на 4 равных треугольника.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 135

2.5. Выберите номера верных утверждений:

- 1. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 3. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 4. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 5. Любой треугольник можно разрезать на 4 равных треугольника.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

2.6. Выберите номера верных утверждений:

- 1. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 2. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 3. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 4. Любой треугольник можно разрезать на 4 равных треугольника.
- 5. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.

Ответ: 134

2.7. Выберите номера верных утверждений:

- 1. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 2. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 3. Любой треугольник можно разрезать на 4 равных треугольника.
- 4. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 5. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 345

2.8. Выберите номера верных утверждений:

- 1. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 3. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 4. Любой треугольник можно разрезать на 4 равных треугольника.
- 5. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 245

2.9. Выберите номера верных утверждений:

- 1. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 3. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 4. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 5. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

2.10. Выберите номера верных утверждений:

- 1. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .
- 3. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части
- 4. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 5. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 5

2.11. Выберите номера верных утверждений:

- 1. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.
- 2. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 3. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 4. Любой треугольник можно разрезать на 4 равных треугольника.
- 5. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 4

2.12. Выберите номера верных утверждений:

- 1. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .
- 2. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 3. Любой треугольник можно разрезать на 4 равных треугольника.
- 4. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 5. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 35

2.13. Выберите номера верных утверждений:

- 1. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 2. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 3. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 4. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70° .
- 5. В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Выберите номера верных утверждений:

- 1. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70°.
- 2. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 4. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 15

2.15. Выберите номера верных утверждений:

- 1. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80°.
- Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 4. Любой треугольник можно разрезать на 4 равных треугольника.
- Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 45

Выберите номера верных утверждений:

- Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 2. Любой треугольник можно разрезать на 4 равных треугольника.
- В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7. 3.
- Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70°.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 25

Выберите номера верных утверждений:

- Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 70°.
- Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- В треугольнике со сторонами 3 и 5 и углом 120° третья сторона равна 7.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

2.18. Выберите номера верных утверждений:

- 1. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .
- 2. Любой треугольник можно разрезать на 4 равных треугольника.
- 3. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 4. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.
- 5. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 23

2.19. Выберите номера верных утверждений:

- 1. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 2. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .
- 3. Любой треугольник можно разрезать на 4 равных треугольника.
- 4. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 5. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 34

2.20. Выберите номера верных утверждений:

- 1. Существует четырёхугольник, не являющийся параллелограммом, в котором точка пересечения диагоналей делит одну из его диагоналей пополам.
- 2. Если две стороны и радиус описанной окружности одного треугольника равны двум сторонам и радиусу описанной окружности другого треугольника, то эти треугольники равны.
- 3. Радиус описанной окружности любого четырёхугольника меньше хотя бы одной из сторон четырёхугольника.
- 4. Если угол при вершине треугольника равен 40° , то биссектрисы двух других углов треугольника пересекаются под углом 80° .
- 5. Если в остроугольном неравнобедренном треугольнике провести три медианы, три биссектрисы и три высоты, то они разделят его на 34 части.

Ответ запишите цифрами в порядке возрастания, без пробелов (например, 12345).

Ответ: 1

Задача №3

3.1. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1000 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

3.2. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1040 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 276

3.3. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1080 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 286

3.4. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1120 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 296

3.5. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1160 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 306

3.6. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1200 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 316

3.7. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1240 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 326

3.8. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1280 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

3.9. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1320 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 346

3.10. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1360 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 356

3.11. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1400 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 366

3.12. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1440 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 376

3.13. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1480 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 386

3.14. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1520 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 396

3.15. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1560 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

3.16. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику — всего 1600 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные — земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 416

3.17. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1640 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 426

3.18. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику — всего 1680 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные — земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 436

3.19. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1720 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 446

3.20. Для приготовления двух коктейлей Марина собрала в одну корзинку землянику и ежевику – всего 1760 ягод. Она решила разделить эти ягоды на две кучи: отдельно землянику и отдельно ежевику. При переборе ягод, каждая третья ягода оказалась ежевикой, а все остальные – земляникой. Даша от ожидания проголодалась поэтому Марина отдавала ей каждую пятую ягоду. Насколько больше ягод земляники Марина отобрала для своего коктейля, чем ягод ежевики?

Ответ: 456

Задача №4

10.1. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 10 м/с, средняя скорость второго и третьего мотоциклистов равна 6 м/с, а средняя скорость первого и третьего мотоциклистов равна 4 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 60

10.2. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния.

Средняя скорость первого и второго мотоциклистов равна 10 м/с, средняя скорость второго и третьего мотоциклистов равна 8 м/с, а средняя скорость первого и третьего мотоциклистов равна 5 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 40

10.3. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 12 м/с, средняя скорость второго и третьего мотоциклистов равна 6 м/с, а средняя скорость первого и третьего мотоциклистов равна 5 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 20

10.4. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 12 м/с, средняя скорость второго и третьего мотоциклистов равна 8 м/с, а средняя скорость первого и третьего мотоциклистов равна 5 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 120

10.5. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 12 м/с, средняя скорость второго и третьего мотоциклистов равна 8 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 24

10.6. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 12 м/с, средняя скорость второго и третьего мотоциклистов равна 9 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 36

10.7. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 15 м/с, средняя скорость второго и третьего мотоциклистов равна 6 м/с, а средняя скорость первого и третьего мотоциклистов равна 5 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 30

10.8. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. Средней скоростью двух мотоциклистов назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния.

Средняя скорость первого и второго мотоциклистов равна 15 м/с, средняя скорость второго и третьего мотоциклистов равна 9 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 90

10.9. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 15 м/с, средняя скорость второго и третьего мотоциклистов равна 10 м/с, а средняя скорость первого и третьего мотоциклистов равна 7 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 42

10.10. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 15 м/с, средняя скорость второго и третьего мотоциклистов равна 10 м/с, а средняя скорость первого и третьего мотоциклистов равна 9 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 18

10.11. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 15 м/с, средняя скорость второго и третьего мотоциклистов равна 12 м/с, а средняя скорость первого и третьего мотоциклистов равна 7 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 140

10.12. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 16 м/с, средняя скорость второго и третьего мотоциклистов равна 8 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 48

10.13. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 16 м/с, средняя скорость второго и третьего мотоциклистов равна 12 м/с, а средняя скорость первого и третьего мотоциклистов равна 7 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 336

10.14. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. Средней скоростью двух мотоциклистов назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния.

Средняя скорость первого и второго мотоциклистов равна 16 м/с, средняя скорость второго и третьего мотоциклистов равна 14 м/с, а средняя скорость первого и третьего мотоциклистов равна 8 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 112

10.15. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 18 м/с, средняя скорость второго и третьего мотоциклистов равна 6 м/с, а средняя скорость первого и третьего мотоциклистов равна 5 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 45

10.16. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 18 м/с, средняя скорость второго и третьего мотоциклистов равна 8 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 72

10.17. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 18 м/с, средняя скорость второго и третьего мотоциклистов равна 14 м/с, а средняя скорость первого и третьего мотоциклистов равна 9 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

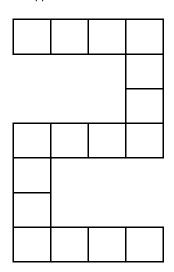
Ответ: 63

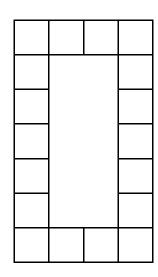
10.18. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 18 м/с, средняя скорость второго и третьего мотоциклистов равна 16 м/с, а средняя скорость первого и третьего мотоциклистов равна 9 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 144

10.19. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. *Средней скоростью двух мотоциклистов* назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния. Средняя скорость первого и второго мотоциклистов равна 20 м/с, средняя скорость второго и третьего мотоциклистов равна 5 м/с, а средняя скорость первого и третьего мотоциклистов равна 6 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 12


10.20. Команда из трёх мотоциклистов участвовала в гонке. Каждый из них проехал трассу одинаковой длины. Средней скоростью двух мотоциклистов назовём отношение суммарного расстояния, которое проехали мотоциклисты, к суммарному времени, которое они потратили на преодоление этого расстояния.


Средняя скорость первого и второго мотоциклистов равна 18 м/с, средняя скорость второго и третьего мотоциклистов равна 14 м/с, а средняя скорость первого и третьего мотоциклистов равна 8 м/с. Найдите скорость (в метрах в секунду) второго мотоциклиста.

Ответ: 504

Задача №5

8.1. Саша вырезал из бумаги число 20 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 1920

8.2. Саша вырезал из бумаги число 22 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 2304

8.3. Саша вырезал из бумаги число 23 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 1152

8.4. Саша вырезал из бумаги число 27 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 192

8.5. Саша вырезал из бумаги число 28 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 5760

8.6. Саша вырезал из бумаги число 29 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

8.7. Саша вырезал из бумаги число 30 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 960

8.8. Саша вырезал из бумаги число 33 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 576

8.9. Саша вырезал из бумаги число 37 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 96

8.10. Саша вырезал из бумаги число 39 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 1728

8.11. Саша вырезал из бумаги число 70 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 160

8.12. Саша вырезал из бумаги число 78 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 480

8.13. Саша вырезал из бумаги число 79 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 288

8.14. Саша вырезал из бумаги число 80 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 4800

8.15. Саша вырезал из бумаги число 88 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 14400

8.16. Саша вырезал из бумаги число 89 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

8.17. Саша вырезал из бумаги число 90 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 2880

8.18. Саша вырезал из бумаги число 99 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 5184

8.19. Саша вырезал из бумаги число 387 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 11520

8.20. Саша вырезал из бумаги число 770 (см. рисунок). Он хочет выбрать 3 клетки в каждой цифре так, чтобы никакие две выбранные клетки одной цифры не лежали в одной строке или в одном столбце. Сколькими способами он может это сделать?

Ответ: 640

Задача №6

6.1. На окружности выбраны точки A,B,C,D так, что $AB=10,AC=8\sqrt{3},AD=14$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 52

6.2. На окружности выбраны точки A,B,C,D так, что $AB=11,AC=8\sqrt{3},AD=13$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 49

6.3. На окружности выбраны точки A,B,C,D так, что $AB=15,AC=12\sqrt{3},AD=21$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 117

6.4. На окружности выбраны точки A,B,C,D так, что $AB=17,AC=12\sqrt{3},AD=19$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 109

6.5. На окружности выбраны точки A, B, C, D так, что $AB = 10, AC = 10\sqrt{3}, AD = 20$, причём $\angle BAC = \angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 100

6.6. На окружности выбраны точки A,B,C,D так, что $AB=12,AC=10\sqrt{3},AD=18$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 84

6.7. На окружности выбраны точки A,B,C,D так, что $AB=12,AC=9\sqrt{3},AD=15$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

6.8. На окружности выбраны точки A, B, C, D так, что AB=8, $AC=9\sqrt{3}$, AD=19, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 91

6.9. На окружности выбраны точки A,B,C,D так, что $AB=13,AC=11\sqrt{3},AD=20$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 103

6.10. На окружности выбраны точки A,B,C,D так, что $AB=15,AC=11\sqrt{3},AD=18$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 93

6.11. На окружности выбраны точки A,B,C,D так, что $AB=20,AC=15\sqrt{3},AD=25$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 175

6.12. На окружности выбраны точки A,B,C,D так, что $AB=15,AC=15\sqrt{3},AD=30$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 225

6.13. На окружности выбраны точки A,B,C,D так, что $AB=20,AC=14\sqrt{3},AD=22$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 148

6.14. На окружности выбраны точки A,B,C,D так, что $AB=15,AC=14\sqrt{3},AD=27$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 183

6.15. На окружности выбраны точки A, B, C, D так, что AB=6, $AC=5\sqrt{3}$, AD=9, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 21

6.16. На окружности выбраны точки A,B,C,D так, что $AB=7,AC=5\sqrt{3},AD=8$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 19

6.17. На окружности выбраны точки A,B,C,D так, что $AB=19,AC=13\sqrt{3},AD=20$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 127

6.18. На окружности выбраны точки A,B,C,D так, что $AB=15,AC=13\sqrt{3},AD=24$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 147

6.19. На окружности выбраны точки A, B, C, D так, что $AB = 10, AC = 7\sqrt{3}, AD = 11$, причём $\angle BAC = \angle DAC$. Найдите квадрат радиуса этой окружности.

Ответ: 37

6.20. На окружности выбраны точки A,B,C,D так, что $AB=8,AC=7\sqrt{3},AD=13$, причём $\angle BAC=\angle DAC$. Найдите квадрат радиуса этой окружности.

Задача №7

7.1. В комнате собралось 37 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 37

7.2. В комнате собралось 59 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 59

7.3. В комнате собралось 73 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 73

7.4. В комнате собралось 29 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 29

7.5. В комнате собралось 103 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 103

7.6. В комнате собралось 97 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 97

7.7. В комнате собралось 67 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 67

7.8. В комнате собралось 47 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 47

7.9. В комнате собралось 113 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 113

7.10. В комнате собралось 53 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 53

7.11. В комнате собралось 89 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

7.12. В комнате собралось 109 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 109

7.13. В комнате собралось 113 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 113

7.14. В комнате собралось 107 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 107

7.15. В комнате собралось 83 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 83

7.16. В комнате собралось 23 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 23

7.17. В комнате собралось 43 человека. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 43

7.18. В комнате собралось 79 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 79

7.19. В комнате собралось 19 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 19

7.20. В комнате собралось 17 человек. Каждый из них является либо рыцарем, который всегда говорит правду, либо лжецом, который всегда лжёт. Каждый из них произнёс фразу: «В этой комнате столько же человек с именем, как у меня, сколько и лжецов». Сколько лжецов находится в комнате?

Ответ: 17

Задача №8

8.1. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,1 и -3. Площадь треугольника с вершинами в этих точках равна 30. Найдите a.

Ответ: 5

8.2. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,1 и -4. Площадь треугольника с вершинами в этих точках равна 60. Найдите a.

8.3. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,2 и -3. Площадь треугольника с вершинами в этих точках равна 30. Найдите a.

Ответ: 2

8.4. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,3 и -3. Площадь треугольника с вершинами в этих точках равна 27. Найдите a.

Ответ: 1

8.5. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,2 и -4. Площадь треугольника с вершинами в этих точках равна 240. Найдите a.

Ответ: 10

8.6. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,2 и -1. Площадь треугольника с вершинами в этих точках равна 12. Найдите a.

Ответ: 4

8.7. На параболе $y = ax^2$ (a > 0) выбраны точки с абсциссами 0, 3 и -1. Площадь треугольника с вершинами в этих точках равна 48. Найдите a.

Ответ: 8

8.8. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,7 и -2. Площадь треугольника с вершинами в этих точках равна 693. Найдите a.

Ответ: 11

8.9. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,5 и -3. Площадь треугольника с вершинами в этих точках равна 420. Найдите a.

Ответ: 7

8.10. На параболе $y=ax^2$ (a>0) выбраны точки с абсциссами 0,1 и -6. Площадь треугольника с вершинами в этих точках равна 441. Найдите a.

Ответ: 21

8.11. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,1 и -3. Площадь треугольника с вершинами в этих точках равна 30. Найдите a.

Ответ: -5

8.12. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,1 и -4. Площадь треугольника с вершинами в этих точках равна 60. Найдите a.

Ответ: -6

8.13. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,2 и -3. Площадь треугольника с вершинами в этих точках равна 30. Найдите a.

Ответ: -2

8.14. На параболе $y=ax^2\ (a<0)$ выбраны точки с абсциссами 0,3 и -3. Площадь треугольника с вершинами в этих точках равна 27. Найдите a.

Ответ: -1

8.15. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,2 и -4. Площадь треугольника с вершинами в этих точках равна 240. Найдите a.

Ответ: -10

8.16. На параболе $y = ax^2$ (a < 0) выбраны точки с абсциссами 0, 2 и -1. Площадь треугольника с вершинами в этих точках равна 12. Найдите a.

Ответ: -4

8.17. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,3 и -1. Площадь треугольника с вершинами в этих точках равна 48. Найдите a.

Ответ: -8

8.18. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,7 и -2. Площадь треугольника с вершинами в этих точках равна 693. Найдите a.

Ответ: -11

8.19. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,5 и -3. Площадь треугольника с вершинами в этих точках равна 420. Найдите a.

Ответ: -7

8.20. На параболе $y=ax^2$ (a<0) выбраны точки с абсциссами 0,1 и -6. Площадь треугольника с вершинами в этих точках равна 441. Найдите a.

Ответ: -21

Задача №9

9.1. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-100; -100). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 20100

9.2. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-80;-80). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 12880

9.3. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (100; 99). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 19701

9.4. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-100;101). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 20301

9.5. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути.

Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-80; 81). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 13041

9.6. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (90;89). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 15931

9.7. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (90; -90). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 16110

9.8. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (88; -88). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 15400

9.9. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (—88; —88). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 15576

9.10. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (88; 87). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 15225

9.11. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-50; 51). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 5151

9.12. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-60; 61). Сколько минут прошло, считая с начала пути черепашки?

9.13. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (60; -60). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 7140

9.14. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-60; -60). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 7260

9.15. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (108; 107). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 23005

9.16. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (108; -108). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 23220

9.17. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (96; -96). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 18336

9.18. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (96; 95). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 18145

9.19. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через

некоторое время оказалась в точке с координатами (-74; -74). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 11026

9.20. На плоскости в начале координат сидит черепашка. Она начала своё движение вверх по оси ординат, пока не прошла отрезок единичной длины. После преодоления очередного отрезка пути, черепашка поворачивает на 90° по часовой стрелке и преодолевает расстояние на единицу больше, чем предыдущий отрезок пути. Каждый отрезок единичной длины черепашка преодолевала в течение одной минуты и через некоторое время оказалась в точке с координатами (-74; 75). Сколько минут прошло, считая с начала пути черепашки?

Ответ: 11175

Задача №10

10.1. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 6, и в каждом из чисел B, 3B, 4B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

Ответ: -407

10.2. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 326

10.3. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 8, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

Ответ: 279

10.4. Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 384

10.5. Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 8, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

Ответ: 281

10.6. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 655

10.7. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 376

10.8. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

10.9. Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 8, и в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 558

10.10.Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B — A.

Ответ: 663

10.11.Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 8, и в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

Ответ: 560

10.12.Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 6, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите B-A.

Ответ: 686

10.13.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 6, и в каждом из чисел B, 3B, 4B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите A+B.

Ответ: 719

10.14.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите A+B.

Ответ: 800

10.15.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 8, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B — наименьшие из возможных чисел с данным свойством. Найдите A + B.

Ответ: 847

10.16.Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B — наименьшие из возможных чисел с данным свойством. Найдите A+B.

Ответ: 742

10.17. Про натуральные числа A и B известно, что в каждом из чисел A, 3A, 4A есть хотя бы одна цифра 8, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите A+B.

Ответ: 845

10.18.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B — наименьшие из возможных чисел с данным свойством. Найдите A + B.

Ответ: 1029

10.19.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 4A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 3B есть хотя бы одна цифра 6, причём A и B — наименьшие из возможных чисел с данным свойством. Найдите A + B.

10.20.Про натуральные числа A и B известно, что в каждом из чисел A, 2A, 3A есть хотя бы одна цифра 7, а в каждом из чисел B, 2B, 4B есть хотя бы одна цифра 8, причём A и B – наименьшие из возможных чисел с данным свойством. Найдите A+B.