МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ СОВЕТ РЕКТОРОВ ВУЗОВ ТОМСКОЙ ОБЛАСТИ ОТКРЫТАЯ РЕГИОНАЛЬНАЯ МЕЖВУЗОВСКАЯ ОЛИМПИАДА 2018-2019 МАТЕМАТИКА (9 КЛАСС) ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП 1 ВАРИАНТ

(ОТВЕТЫ)

1. Найдите сумму чисел:

$$6 + 66 + 666 + 6666 + \dots + \underbrace{66666\dots6}_{2018 \text{ штук}}$$
. (7 баллов)

Ответ: $\frac{2(10^{2019}-18172)}{27}$.

Решение:

$$6 + 66 + 666 + 6666 + \cdots + \underbrace{66666...6}_{2018 \text{ штук}} = \frac{2}{3} \left(9 + 99 + 999 + 9999 + \cdots + \underbrace{99999...9}_{2018 \text{ штук}} \right) =$$

$$= \frac{2}{3} \left(10 - 1 + 10^2 - 1 + 10^3 - 1 + \cdots + 10^{2018} - 1 \right) = \frac{2}{3} \left(\frac{10(10^{2018} - 1)}{10 - 1} - 2018 \right) =$$

$$= \frac{2}{3} \left(\frac{10^{2019} - 10 - 2018 \cdot 9}{9} \right) = \frac{2(10^{2019} - 18172)}{27}.$$

2. Функция f удовлетворяет равенству $(x-1)f(x)+f\left(\frac{1}{x}\right)=\frac{1}{x-1}$ для каждого значения x, не равного 0 и 1. Найдите $f\left(\frac{2018}{2019}\right)$.

Ответ: 2019.

Решение:

Подставим в исходное равенство $\frac{1}{x}$ вместо x. Получим вместе с исходным равенством систему линейных уравнений относительно f(x) и $f\left(\frac{1}{x}\right)$.

$$\begin{cases} (x-1)f(x) + f\left(\frac{1}{x}\right) = \frac{1}{x-1}, \\ \left(\frac{1}{x} - 1\right)f\left(\frac{1}{x}\right) + f(x) = \frac{x}{x-1}. \end{cases}$$

Решая полученную систему, находим $f(x) = \frac{1}{1-x}$. Следовательно, $f\left(\frac{2018}{2019}\right) = \frac{1}{1-\frac{2018}{2019}} = 2019$.

3. Для любой пары чисел определена некоторая операция «*», удовлетворяющая следующим свойствам: $a*(b*c)=(a*b)\cdot c$ и a*a=1, где операция «·» — операция умножения. Найдите корень x уравнения: x*2=2018. (7 баллов)

Ответ: 4036.

Решение:

Учитывая условие задачи, имеем $x*1 = x*(x*x) = (x*x) \cdot x = 1 \cdot x = x$. Тогда

1)
$$(x * 2) \cdot 2 = 2018 \cdot 2 = 4036$$
,

2)
$$(x * 2) \cdot 2 = x * (2 * 2) = x \cdot 1 = x$$
.

Следовательно, x = 4036.

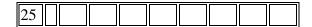
4. Всех пассажиров небольшого морского лайнера «Победа» в случае экстренной эвакуации можно разместить в 5-ти и 9-ти местных шлюпках, причем 9-ти местных шлюпок больше, чем 5-тиместных. Если число 9-ти местных шлюпок увеличить вдвое, то общее число шлюпок будет более 24, а если увеличить вдвое число 5-ти местных шлюпок, то общее число шлюпок будет меньше 27. Определите число пассажиров морского лайнера «Победа».

(7 баллов)

Ответ: 60 возможных вариантов приведены в таблице ниже.

Решение:

Пусть x, y — число 5-ти, 9-ти местных шлюпок соответственно, а z — число всех пассажиров.


Тогда
$$z = 5x + 9y$$
, где x, y удовлетворяют системе неравенств:
$$\begin{cases} 2y + x > 24, \\ 2x + y < 27, \\ y > x. \end{cases}$$

Рассмотрим первые два неравенства системы более детально.

- 1) Умножая первое неравенство на (-2), имеем $\begin{cases} -4y 2x < -48, \\ 2x + y < 27. \end{cases}$ Сложим эти два неравенства и получим -3y < -21, следовательно, y > 7.
- 2) Умножая второе неравенство на (-2), имеем $\begin{cases} 2y+x>24, \\ -4x-2y>-54. \end{cases}$ Сложим эти два неравенства и получим -3x>-30, следовательно, x<10.

Далее перебор, удовлетворяющий системе неравенств и полученным ограничениям, а затем вычисление z = 5x + 9y — числа всех пассажиров (значения z расположены в ячейках на пересечении строк и столбцов для соответствующих x, y).

y/x	9	8	7	6	5	4	3	2	1
8									
9		121	116						
10		130	125	120	115				
11			134	129	124	119	114		
12			143	138	133	128	123	118	113
13				147	142	137	132	127	122
14				156	151	146	141	136	131
15					160	155	150	145	140
16					169	164	159	154	149
17						173	168	163	158
18						182	177	172	167
19							186	181	176
20							195	190	185
21								199	194
22								208	203
23									212
24									221

5. Косинус угла между боковыми сторонами AD и BC трапеции ABCD равен 0,8. В трапецию вписана окружность, причем сторона AD делится точкой касания на отрезки длины 1 и 4. Определите длину боковой стороны BC трапеции. (7 баллов)

Ответ: 4 или $\frac{100}{7}$.

Решение: Пусть S—точка пересечения прямых AD и BC; K, L, M—точки касания вписанной в трапецию окружности со сторонами AB, AD и CD соответственно, O— ее центр. Тогда $OK \perp AB$, $OM \perp CD$, как радиусы, и поскольку $AB \parallel CD$, точки K, O, M лежат на одной прямой, то есть KM—диаметр. Условию задачи отвечают два возможных случая расположения точки L на стороне AD.

- 1) В этом случае AL=1, DL=4 (рис.2). Тогда AK=AL=1, DM=DL=4. Опустим $AN\perp CD$. Учитывая, что $AN\parallel KM$, получаем NM=1, DN=3. В прямоугольном треугольнике ADN гипотенуза равна AD=5, катет DN=3, следовательно, AN=4. Значит, $\cos \angle DAN=\frac{4}{5}$, а учитывая условие задачи, приходим к выводу, что $\angle DAN=\angle DSC$, а прямая $SC\parallel AN$. Следовательно, $\angle C$ трапеции прямой, а длина BC=AN=4.
- 2) В этом случае AL = 4, DL = 1 (рис.3). Как и раньше, длина перпендикуляра AN = 4, DN = 3, $\cos \angle ADN = \frac{3}{5}$, $\sin \angle ADN = \frac{4}{5}$. Острый угол ADN является внешним для трапеции и треугольника DSC, поэтому $\angle ADN = \angle C + \angle S$. Учитывая, что $\cos \angle S = \frac{4}{5}$, находим $\sin \angle S = \frac{3}{5}$, $\sin \angle C = \sin(\angle ADN \angle S) = \frac{7}{25}$. Так как $AN = BC \cdot \sin \angle C$, то $BC = \frac{100}{7}$.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ СОВЕТ РЕКТОРОВ ВУЗОВ ТОМСКОЙ ОБЛАСТИ ОТКРЫТАЯ РЕГИОНАЛЬНАЯ МЕЖВУЗОВСКАЯ ОЛИМПИАДА 2018-2019 МАТЕМАТИКА (9 КЛАСС) ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП 2 ВАРИАНТ (ОТВЕТЫ)

1. Найдите сумму чисел:

$$3 + 33 + 333 + 3333 + \dots + 333333...3$$
 . (7 баллов)

Ответ: $\frac{10^{2019}-18172}{27}$.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

2. Функция f удовлетворяет равенству $(1-x)f(x) - f\left(\frac{1}{x}\right) = \frac{1}{1-x}$ для каждого значения x, не равного 0 и 1. Найдите $f\left(\frac{2019}{2018}\right)$. (7 баллов)

Ответ: - 2018.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

3. Для любой пары чисел определена некоторая операция «*», удовлетворяющая следующим $a*(b*c)=(a*b)\cdot c$ и a*a=1, где операция «·» – операция умножения. свойствам: Найдите корень x уравнения: x * 3 = 2019. (7 баллов)

Ответ: 6057.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

4. Всех пассажиров небольшого морского лайнера «Победа» в случае экстренной эвакуации можно разместить в 7-ми и 11-ти местных шлюпках, причем 11-ти местных шлюпок больше, чем 7-ми местных. Если число 11-ти местных шлюпок увеличить вдвое, то общее число шлюпок будет более 25, а если увеличить вдвое число 7-ми местных шлюпок, то общее число шлюпок будет меньше 29. Определите число пассажиров морского лайнера «Победа».

(7 баллов)

Ответ: 60 возможных вариантов приведены в таблице ниже.

Решение:

Пусть x, y — число 7-ти, 11-ти местных шлюпок соответственно, а z — число всех пассажиров.

Тогда z = 7x + 11y, где x, y удовлетворяют системе неравенств: $\begin{cases} 2y + x > 25, \\ 2x + y < 29, \\ y > x. \end{cases}$

Рассмотрим первые два неравенства системы более детально.

1) Умножая первое неравенство на (-2), имеем $\begin{cases} -4y - 2x < -50, \\ 2x + y < 29. \end{cases}$ Сложим эти два неравенства и получим -3y < -21, следовательно, y > 7

2) Умножая второе неравенство на (-2), имеем $\begin{cases} 2y+x>25, \\ -4x-2y>-58. \end{cases}$ Сложим эти два неравенства и получим -3x>-33, следовательно, x<11.

Далее перебор, удовлетворяющий системе неравенств и полученным ограничениям, а затем вычисление z = 7x + 11y — числа всех пассажиров (значения z расположены в ячейках на пересечении строк и столбцов для соответствующих x, y).

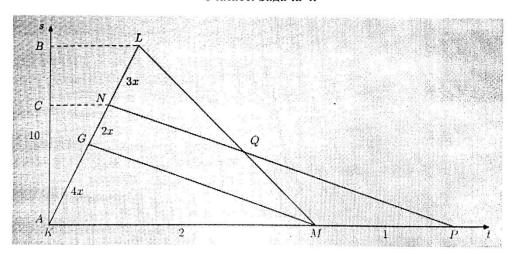
лченках на пересечении строк и столоцов д									
y/x	9	8	7	6	5	4	3	2	1
8									
9		155							
10	173	166	159	152	156				
11		177	170	163	167	149			
12		188	181	174	178	160	153	146	
13			192	185	189	171	164	157	150
14			203	196	200	182	175	168	161
15				207	211	193	186	179	172
16				218	222	204	197	190	183
17					233	215	208	201	194
18						226	219	212	205
19						237	230	223	216
20						248	241	234	227
21							252	245	238
22							263	256	249
23								267	260
24								278	271
25									282
26									293

5. Угол между боковыми сторонами AB и CD трапеции ABCD равен 30°. В трапецию вписана окружность, причем сторона AB делится точкой касания на отрезки длины $\sqrt{3}$ и $3\sqrt{3}$. Определите длину боковой стороны CD трапеции. (7 баллов)

Ответ: 6 или 12.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

Критерии оценивания приведены в таблице:


Баллы	Критерии оценивания
7	Полное обоснованное решение.
6	Обоснованное решение с несущественными недочетами.
5-6	Решение содержит незначительные ошибки, пробелы в обоснованиях, но в целом верно и может
	стать полностью правильным после небольших исправлений или дополнений.
4	Задача в большей степени решена, чем не решена, например, верно рассмотрен один из двух (более

9 класс. Заключительный этап. Ответы и решения.

	сложный) существенных случаев.			
2-3	Задача не решена, но приведены формулы, чертежи, соображения или доказаны некоторые			
	вспомогательные утверждения, имеющие отношение к решению задачи.			
1	Задача не решена, но предпринята попытка решения, рассмотрены, например, отдельные (частные)			
	случаи при отсутствии решения или при ошибочном решении.			
0	Решение отсутствует, либо решение не соответствует ни одному из критериев, перечисленных выше.			

Рисунки и графики к задачам.

8 класс. Задача 4.

Рис.1

9 класс. Задача 5.

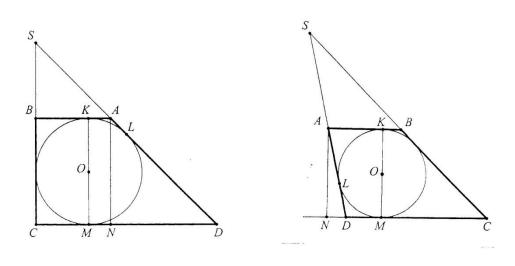


Рис.2

Рис.3