МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ СОВЕТ РЕКТОРОВ ВУЗОВ ТОМСКОЙ ОБЛАСТИ

ОТКРЫТАЯ РЕГИОНАЛЬНАЯ МЕЖВУЗОВСКАЯ ОЛИМПИАДА 2018-2019

МАТЕМАТИКА (8 КЛАСС) ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП 1 ВАРИАНТ (ОТВЕТЫ)

1. Вычислите:

$$\frac{2 \cdot 2019}{1 + \frac{1}{1 + 2} + \frac{1}{1 + 2 + 3} + \dots + \frac{1}{1 + 2 + \dots + 2019}}$$

(7 баллов)

Ответ: 2020.

Решение:

$$\frac{2 \cdot 2019}{1 + \frac{1}{1 + 2} + \frac{1}{1 + 2 + 3} + \dots + \frac{1}{1 + 2 + \dots + 2019}} = \frac{2 \cdot 2019}{1 + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \dots + \frac{1}{1010 \cdot 2019}} =$$

$$=\frac{2019}{\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots+\frac{1}{2020\cdot 2019}}=\frac{2019}{\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\frac{1}{4\cdot 5}+\cdots+\frac{1}{2019\cdot 2020}}=$$

$$= \frac{2019}{1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2019} - \frac{1}{2020}} = \frac{2019}{1 - \frac{1}{2020}} = 2020.$$

2. Найдите все пары чисел (a, b), при которых функция

$$f(x) = \frac{(a+5b)x + a + b}{ax + b}$$

постоянна во всей области ее определения.

(7 баллов)

Otbet: $a = \pm \sqrt{5}b$, $b \neq 0$.

Решение:

Отметим сначала, что при a = b = 0 функция f(x) не определена ни для одного значения x. Если a = 0, $b \neq 0$, то получаем f(x) = 5x + 1 и f(x) не является постоянной, значит, $a \neq 0$.

Пусть теперь при всех x из области определения D(f) функции f(x), то есть при всех $x \neq -\frac{b}{a}$ выполняется равенство f(x)=k. Тогда, учитывая представление f(x), получим

$$(a+5b)x + a + b = kax + kb$$
, или $(a+5b-ka)x + (a+b-kb) = 0$ при всех $x \in D(f)$.

А это возможно тогда и только тогда, когда выполнятся следующая система уравнений:

$$\begin{cases} a + 5b - ka = 0, \\ a + b - kb = 0. \end{cases}$$

 $\begin{cases} a+5b-ka=0,\\ a+b-kb=0. \end{cases}$ Откуда получаем a=(k-1)b, и затем $(k^2-2k-4)b=0$. Если b=0, то и a=0, чего быть не может, как отмечалось выше, следовательно,

$$k^2 - 2k - 4 = 0$$
, $k = 1 \pm \sqrt{5}$, $a = (k - 1)b = \pm \sqrt{5}b$, где $b \neq 0$.

3. Решите в целых числах уравнение:

$$x^2 - xy - 2y^2 = 7. (7 баллов)$$

Other: $\{(3; -2), (5; 2), (-3; 2), (-5; -2)\}$

Решение:

Разложим левую часть уравнения, например, с помощью группировки, на множители:

$$x^2 - xy - 2y^2 = x^2 - y^2 - xy - y^2 = (x + y)(x - y) - y(x + y) = (x + y)(x - 2y)$$
. Откуда получим следующий вид исходного уравнения:

$$(x+y)(x-2y)=7.$$

Учитывая, что x и y — целые числа, а число 7 — простое число, решение уравнения сводится к решению четырех систем:

$$\begin{cases} x + y = 1, & \{x + y = 7, \\ x - 2y = 7, & \{x - 2y = 1, \\ x - 2y = -7, & \{x - 2y = -1, \\ x - 2y = -1, \\ x - 2y = -1. \end{cases}$$

Решая эти системы уравнений, получаем четыре пары решений:

$$(3;-2), (5;2), (-3;2), (-5;-2).$$

Замечание: за каждое правильное решение, найденное подбором – 1балл.

4. Из городка «yx» в городок «Ax» в 10^{00} утра выехал Иван на своем велосипеде, проехав две трети пути, он миновал городок (Ox), из которого в этот момент времени в городок (Vx)отправился Петр пешком. В тот момент времени, когда Иван прибыл в городок «Ax», оттуда в обратном направлении выехал Николай на своем велосипеде и прибыл в городок «yx» в 11^{00} утра этого же дня. В скольких километрах от городка «Ах» Николай догнал Петра, если Петр прибыл в городок «yx» в 12^{00} утра того же дня, при этом скорость каждого участника движения была постоянной, а расстояние между городками «Ух» и «Ах» составляет всего 10 км. (7 баллов)

Ответ: 6 км.

Решение:

Решим задачу графически-геометрическим способом. Изобразим графики движения Ивана через отрезок KL, Николая через отрезок LM и Петра через отрезок NP в системе координат (t; s), где t— время в часах, s — расстояние в километрах от пункта A (рис.1). Пусть Q — точка пересечения

LM и NP. По условию MK = 2 и PM = 1. Проведём $MG \parallel NQ$, $G \in KL$, тогда по теореме Фалеса имеем

$$NG : GK = PM : MK = 1 : 2$$
.

Тогда, если NG = 2x, то GK = 4x, а LN = 3x. Откуда опять по теореме Фалеса имеем

$$LQ: QM = LN: NG = 3x: 2x = 3: 2$$
.

Таким образом, искомое расстояние равно $\frac{3}{5}$: 10 = 6 (км.)

Отметим, что при поиске отношения LQ:QM можно использовать теорему Менелая. Точки N,Q и P лежат на одной прямой, поэтому $\frac{KN}{NL}\cdot\frac{LQ}{QM}\cdot\frac{MP}{PK}=1$ или $\frac{2}{1}\cdot\frac{LQ}{QM}\cdot\frac{1}{3}=1$. Следовательно, $\frac{LQ}{QM}=\frac{3}{2}$.

5. Одна сторона некоторого треугольника в два раза больше другой, а периметр этого треугольника равен 60, наибольшая его сторона в сумме с учетверенной наименьшей равна 71. Найдите стороны этого треугольника. (7 баллов)

Ответ: 11, 22, 27.

Решение:

Обозначим через a, b, c стороны треугольника, без ограничения общности, будем считать, что $a \le b \le c$. Учитывая условие задачи, запишем систему уравнений:

$$\begin{cases}
a + b + c = 60, \\
4a + c = 71.
\end{cases}$$

Так как одна из сторон треугольника в 2 раза больше другой, то рассмотрим три возможных случая.

- 1) Если c=2b, то $a+b \le 2b=c$. Следовательно, не выполняется неравенство треугольника a+b>c, необходимое для существования треугольника.
- 2) Если c=2a, то из второго условия системы находим 6a=71, $a=\frac{71}{6}$, тогда $c=\frac{71}{3}$.

Затем находим значение b из первого уравнения $b=\frac{147}{6}$, откуда следует b>c, что противоречит, что $a\leq b\leq c$.

3) Если b=2a, то система запишется в виде:

$$\begin{cases} 3a + c = 60, \\ 4a + c = 71. \end{cases}$$

Откуда a = 11, c = 27, b = 22. Полученное решение удовлетворяет всем условиям задачи.

Замечание: за правильное решение, найденное подбором – 1балл.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ СОВЕТ РЕКТОРОВ ВУЗОВ ТОМСКОЙ ОБЛАСТИ ОТКРЫТАЯ РЕГИОНАЛЬНАЯ МЕЖВУЗОВСКАЯ ОЛИМПИАДА 2018-2019

МАТЕМАТИКА (8 КЛАСС) ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП 2 ВАРИАНТ (ОТВЕТЫ)

1. Вычислите:

$$\dfrac{2\cdot 2018}{1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\cdots+\dfrac{1}{1+2+\cdots+2018}}$$
 (7 баллов)

Ответ: 2019.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

2. Найдите все пары чисел (a, b), при которых функция

$$f(x) = \frac{(2a+3b)x+a+2b}{ax+b}$$

постоянна во всей области ее определения.

(7 баллов)

Ответ: $a = \pm \sqrt{3}b, \ b \neq 0.$

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

3. Решите в целых числах уравнение:
$$x^2 - xy - 2y^2 = 7$$
. (7 баллов)

Ответ: $\{(3; -2), (5; 2), (-3; 2), (-5; -2)\}$

Решение: решение этой задачи полностью совпадает с решением задачи в варианте 1 под тем же номером.

Замечание: за каждое правильное решение, найденное подбором – 1балл.

4. Из городка «Vx» в городок «Ax» в 11^{00} утра выехал Иван на своем велосипеде, проехав две пятых пути, он миновал городок «Ox», из которого в этот момент времени в городок «Vx» отправился Петр пешком. В тот момент времени, когда Иван прибыл в городок «Vx», оттуда в обратном направлении выехал Николай на своем велосипеде и прибыл в городок «Vx» в 12^{00} этого же дня. В скольких километрах от городка «Vx» Николай догнал Петра, если Петр прибыл в городок «Vx» в Vx» в Vx» в Vx» в Vx0 того же дня, при этом скорость

каждого участника движения была постоянной, а расстояние между городками «Yx» и «Ax» составляет всего

7 км. (7 баллов)

Ответ: 5 км.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

5. Одна сторона некоторого треугольника в два раза больше другой, а периметр этого треугольника равен 56, учетверенная наименьшая сторона на 21 длиннее наибольшей из сторон. Найдите стороны этого треугольника. (7 **баллов**)

Ответ: 11, 22, 23.

Решение: аналогичное решение этой задачи присутствует в варианте 1 под тем же номером.

Замечание: за правильное решение, найденное подбором – 1балл.

Критерии оценивания приведены в таблице:

Баллы	Критерии оценивания
7	Полное обоснованное решение.
6	Обоснованное решение с несущественными недочетами.
5-6	Решение содержит незначительные ошибки, пробелы в обоснованиях, но в целом верно и может
	стать полностью правильным после небольших исправлений или дополнений.
4	Задача в большей степени решена, чем не решена, например, верно рассмотрен один из двух (более
	сложный) существенных случаев.
2-3	Задача не решена, но приведены формулы, чертежи, соображения или доказаны некоторые
	вспомогательные утверждения, имеющие отношение к решению задачи.
1	Задача не решена, но предпринята попытка решения, рассмотрены, например, отдельные (частные)
	случаи при отсутствии решения или при ошибочном решении.
0	Решение отсутствует, либо решение не соответствует ни одному из критериев, перечисленных выше.

Рисунки и графики к задачам.

8 класс. Задача 4.

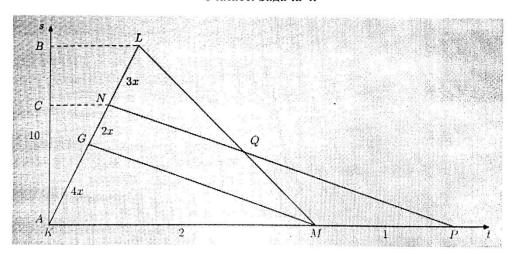


Рис.1

9 класс. Задача 5.

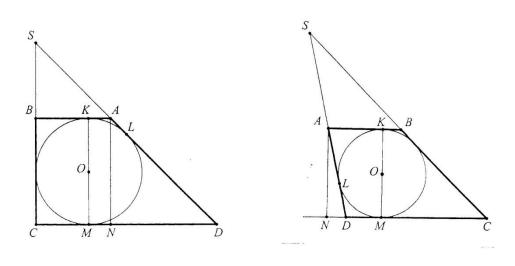


Рис.2

Рис.3