РЕШЕНИЯ И КРИТЕРИИ ОЦЕНИВАНИЯ 10-11 КЛАССЫ ВАРИАНТ 1

Залание 1.

Нерастворимый в кислотах осадок – это сульфат бария. Кислая калиевая соль ортосурьмяной кислоты является реактивом для определения катионов натрия.

 $Na^{+} + KH_{2}SbO_{4} - - > NaH_{2}SbO_{4} + K^{+}$

Соответсвенно, мирабилит содержит сульфат натрия.

 $Na_2SO_4 \cdot xH_2O + BaCI_2 = 2NaCI + BaSO_4 \downarrow + xH_2O$

 $\nu(BaSO_4) = \nu(Na_2SO_4 \cdot xH_2O) = 0.01$ моль

 $M(Na_2SO_4 \cdot xH_2O) = 3,22/0,01 = 322$ г/моль

 $M(Na_2SO_4) = 142 \ \Gamma/моль$

Разность молярных масс составляет 322–142 = 180

X = 180г / 18г/моль = 10 моль

Формула мирабилита Na₂SO₄· 10H₂O

Система оценивания

1.	Определение соли X	2 б	алл			
2.	За уравнение реакции	2 балла (по 1 б. за			за	
		уравнение)				
3.	Расчет состава мирабилита	3 балла				
ИТОГО		7 б	аллов			

Задание 2.

1. Распишем реакции:

 $Me^{1} + nHCl \longrightarrow Me^{1}Cl_{n} + n/2 H_{2}$

Х моль

 $Me^2 + m HCl \longrightarrow Me^2Cl_m + m/2 H_2$

Ү моль

 $Me^1 + n/2 Cl_2 \longrightarrow Me^1Cl_n$

Х моль

 $Me^2 + m/2 Cl_2 \longrightarrow Me^2Cl_m$

Ү моль

Видим, что количество поглощенного хлора и количество выделившегося водорода должны быть одинаковы: Xn/2+Ym/2=Xn/2+Ym/2

Однако, согласно условию задачи они не одинаковы, следовательно один из металлов обладает несколькими степенями окисления катионов и скорее всего своего наивысшей степени +3 достигает при обработке газообразным хлором, а при обработке соляной кислотой +2.

Составим систему уравнений:

$$\begin{cases} \left(\frac{3x}{2} + \frac{2y}{2}\right) 22,4 = 19,04 \\ \left(\frac{3x}{2} + \frac{3y}{2}\right) 22,4 = 20,16 \end{cases}$$

где x – количество металла Me^1 , а y - количество металла Me^2 .

Решая ее находим, что x=0.5 y=0.1.

Составим уравнение 0.1a + 0.5b = 19.1, где a — молярная масса Me^2 , b - молярная масса Me^1 .

a = 191 - 5b

b < 38,2

Этому условию отвечает только Al, следовательно, другой металл – Fe.

Состав смеси металлов: 0,1 моль Fe и 0,5 моль Al.

$$\omega(Fe) = \frac{56 * 0.1}{19.1} * 100\% = 29.32\%$$

$$\omega(Al) = \frac{27 * 0.5}{19.1} * 100\% = 70.68\%$$

Система оценивания

1.	Вывод о разности степеней окисления металлов при обработке	2 балла
	соляной кислотой	
2.	Уравнения реакции по 1 баллу	4 балла
3.	Определение одного металла – по 2 балла	4 балла
4.	Определение содержания одного металла – по 2 балла	4 балла
ИΤ	14 баллов	

Задание 3.

$$H_2N$$
 H_2SO_4
 H_2N
 H_2N

2. Гербици́ды (от лат. Herba — трава и саеdo — убиваю) — химические вещества, применяемые для уничтожения рас **г** пьности.

Система оценивания

спетеми оценивания			_ 1)
1	За каждое вещество 2 балла	10 баллов	
2	За правильный ответ	2 балла	
ИТОГО		12 баллов	

Задание 4.

$$\begin{array}{c} \text{CH}_{3}-\text{CH}_{3} \frac{\text{Pd, T, p,}}{\text{-H}_{2}} > \text{CH}_{2}=\text{CH}_{2} \frac{\text{KMnO}_{4}, \text{H}_{2}\text{O}}{\text{-HO-CH}_{2}-\text{CH}_{2}-\text{OH}} \frac{\text{SeO}_{2}}{\text{-OH}_{2}-\text{CH}_{2}-\text{OH}} > \text{O=CH-CH=O} \\ \text{HBr} \\ \text{CH}_{3}-\text{CH}_{2} \xrightarrow{\text{Na}} \begin{array}{c} \text{KOH, H}_{2}\text{O} \\ \text{CH}_{3}-\text{CH}_{2}-\text{OH} & \xrightarrow{\text{[O]}} \end{array} > \text{CH}_{3}-\text{CH=O} \xrightarrow{\text{-CH}_{3}-\text{COOH}} \\ \text{CH}_{2}-\text{CH}_{3} \end{array}$$

 $A-CH_3\!\!-\!\!CH_3$

 $B - CH_2 = CH_2$

 $C-HO-CH_2-CH_2-OH$

D - O = CH - CH = O

 $E-CH_3-CH_2-CH_2-CH_3$

 $F-CH_3\!\!-\!\!CH_2\!\!-\!\!Br$

 $G-CH_3-CH_2-OH$

 $H - CH_3 - CH = O$

 $I - CH_3 - COOH$

Система оценивания

1	За расчет молярной массы вещества А	1 балл
2	За каждое вещество 1 балл	9 баллов
ИТОГ	0	10 баллов

Задание 5.

<i>№</i>	Элемент оценивания	Критерий оценивания
n/n		
1.	a) Ha aноде: $2Cl^2 - 2e \rightarrow Cl_2^0$;	За каждое уравнение
	на катоде: $2H^+ + 2e \rightarrow H_2^0$;	полуреакции – 0,25
	суммарное уравнение: $2NaCl + 2H_2O \xrightarrow{\text{электролиз}} 2NaOH +$	баллов;
	$H_2 + Cl_2$.	За каждое суммарное
	б) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	уравнение – 0,5 баллов
	на катоде: $2H^+ + 2e \rightarrow H_2^0$;	
	суммарное уравнение: $2H_2O \xrightarrow{\text{электролиз}} 2H_2 + O_2$.	
	в) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	
	на катоде: $Cu^{2+} + 2e \rightarrow Cu^{0}$;	
	суммарное уравнение: $2CuSO_4 + 2H_2O \xrightarrow{\text{электролиз}} 2Cu + O_2$	
	+2H2SO4.	
	г) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	
	на катоде: $2H^+ + 2e \rightarrow H_2^0$;	
	суммарное уравнение: $2H_2O \xrightarrow{\text{электролиз}} 2H_2 + O_2$.	Всего – 4 балла
2.	Полупроницаемая перегородка не позволяет	
	смешиваться продуктам электролиза на разнополярных	
	электродах, поэтому на аноде ОН-ионы будут	
	расходоваться, а Н ⁺ -ионы – концентрироваться. На	
	катоде, наоборот, ОН-ионы будут концентрироваться, а	
	Н+-ионы – расходоваться. Соответственно, на аноде в	
	ходе электролиза будет наблюдаться снижение рН, а на	1 балл
	катоде – рост рН.	
	В природной воде может содержаться значительное	

	ICONDIDECTRO VIONATOR II TUNCHIIV MOTULIOR HOOTOMVIII	1 балл
	количество хлоридов и тяжелых металлов, поэтому на	1 Gajiji
	катоде может протекать осаждение металлов, а на аноде	
2	 выделение хлора. 	
3.	Рассчитаем количество O_2 (также участник может начат	
	расчет с H_2 или сразу количество H^+):	0.5.5
	$n = \frac{0,0429\text{A}*900}{96500\frac{\text{Кл}}{200}*4} = 0,0001$ моль.	0,5 баллов
	моль	
	Количество Н+, образовавшееся на аноде в 4 раза	0,5 баллов
	больше – 0,0004 моль. Объем раствора 1 л. Тогда на	
	аноде значение рН составляет:	0,5 баллов
	$pH = -lg(10^{-4}) = 4.$	
	На катоде в соответствии с уравнением полуреакции	
	образуется в 2 раза меньшее количество ОН - 0,0002	0,5 баллов
	моль. С учетом объема раствора (1 л):	
	$[H^+] = \frac{10^{-14}}{[OH^-]} = 5 \cdot 10^{-11}.$	
		0,25 баллов
	$pH = -\lg(5 \cdot 10^{-11}) = 10,3.$	0,25 баллов
4.	Помимо изменения значений рН вода, подвергнутая	
	электролизу, некоторое время (из условия задачи «двое	
	суток») содержит некоторое количество растворенных	
	кислорода (анод) и водорода (катод), а, возможно, и	
	атомарные кислород и водород («в момент выделения»).	
	Поэтому анолит и католит могут иметь окислительные и	
	восстановительные свойства соответственно.	
	а) При полоскании горла по-видимому кислая	0,25 баллов
	окислительная среда способствует уничтожению	0,20 0411101
	бактерий.	
	Такой же эффект может дать полоскание горла	0,25 баллов
	подкисленным, например, уксусом раствором перекиси	0,25 0451105
	водорода (участником может быть приведен другой	
	адекватный пример).	0,25 баллов
	б) Промывание раны также способствует уничтожению	0,23 0431101
	бактерий, обеззараживанию раны. Затем обработка	
	«живой» водой нейтрализует кислую среду.	0,25 баллов
	Такой же эффект может дать промывание раны	0,23 UMINOB
	перекисью водорода (участником может быть приведен	
	· · · · · · · · · · · · · · · · · · ·	0,25 баллов
	другой адекватный пример).	0,23 Ualilus
	в) Возникновение изжоги связано с попаданием	
	желудочного сока на слизистую пищевода. «Живая»	0.25 527727
	вода имеет щелочную среду, поэтому нейтрализует	0,25 баллов
	кислоту желудочного сока.	
	Такой же эффект может дать прием слабого раствора	
	пищевой соды (участником может быть приведен	
	другой адекватный пример).	
И	ΤΟΓΟ	10 баллов

Максимальный балл за все задания -50 баллов

РЕШЕНИЯ И КРИТЕРИИ ОЦЕНИВАНИЯ 10-11 КЛАССЫ ВАРИАНТ 2

Задание 1.

Нерастворимый в кислотах осадок это сульфат бария. Красная кровяная соль дает темно-синий осадок турнбулевой сини с солями Fe^{2+} .

 $4 \text{ Fe}^{2+} + 3 [\text{Fe}(\text{CN})_6]^{3-} => \text{Fe}_4 [\text{Fe}(\text{CN})_6]_3$

Соответственно, мелантерит содержит сульфат железа (II).

 $FeSO_4 \cdot xH_2O + BaCI_2 = 2FeCI_2 + BaSO_4 \downarrow + xH_2O$

 $v(BaSO_4) = v(FeSO_4 \cdot xH_2O) = 0.02$ моль

 $M(FeSO_4 \cdot xH_2O) = 5,56/0,02 = 278 \ г/моль$

 $M(FeSO_4) = 152$ г/моль

Разность молярных масс составляет 278–152 = 126

X = 126 / 18 = 7

Формула мелантеритаFeSO₄·7H₂O

Система оценивания

1	Определение соли X	2 балл
2	За уравнение реакции	2 балла (по 1 б. за уравнение)
3	Расчет состава мирабилита	3 балла
ИТОГО		7 баллов

Задание 2.

Распишем уравнения протекающих реакций

$$2 \Im^{1} + n/2 O_{2} \Rightarrow \Im^{1}_{2}O_{n}$$

х моль

$$2 \Im^2 + m/2 O_2 \Rightarrow \Im^2_2 O_m$$

у моль

Увеличение массы при прокаливании в токе кислорода очевидно происходит за счет кислорода.

$$\Delta m = 83 - 57,4 = 25,6 \Gamma = m(O_2)$$

Согласно уравнениям реакций:

$$32\left(\frac{x}{2} \cdot \frac{n}{2} + \frac{y}{2} \cdot \frac{m}{2}\right) = 25.6 \text{ } \Gamma \Rightarrow xn + ym = 3.2$$

Очевидно, что одно из веществ не реагирует с концентрированной азотной кислотой.

Пусть это будет 3^1 . =>

$$m(\Im^1) = 41.6 \Gamma$$

 $m(\Im^2) = 15.8 \Gamma$

Обозначим молярные массы веществ как

$$M(\mathfrak{I}^1) = a$$
$$M(\mathfrak{I}^2) = b$$

Составим систему уравнений:

$$\begin{cases} ax = 41,6 \\ by = 15,8 \\ xn + ym = 3,2 \end{cases} \Rightarrow \begin{cases} x = \frac{41,6}{a} \\ y = \frac{15,8}{b} \\ xn + ym = 3,2 \end{cases}$$

$$\frac{41,6n}{a} + \frac{15,8m}{b} = 3,2 \Rightarrow \frac{13n}{a} + \frac{15,8m}{3,2b} = 1$$

$$\frac{13n}{a} = 1 - \frac{15,8m}{3,2b} \Rightarrow \frac{13n}{a} = \frac{3,2b - 15,8m}{3,2b}$$

Выразим а:

$$a = \frac{13n \cdot 3,2b}{3,2b - 15,8m}$$

Из этого следует, что молярная масса \mathfrak{I}^1 кратна 13. Из элементов с максимальной степенью окисления +6 подходит хром (Cr). Действительно, хром пассивирует в концентрированной азотной кислоте и не реагирует с ней.

В реакции с кислородом n = 3, x = 0.8 моль. Подставим значения x и n: 0.8*3 + ym = 3.2

$$ym = 0.8$$
 $y = \frac{0.8}{m}$
 $b = \frac{15.8}{y}$ подставим y
 $b = \frac{15.8m}{0.8}$
 $b = 19.75m$

Перебирая m получаем, что b=79 и 9^2 = Se. y = 0.8/4 = 0.2 моль.

$$\omega(Cr) = \frac{52 * 0.8}{57.4} * 100\% = 72,47\%$$

$$\omega(Se) = \frac{79 * 0.2}{57.4} * 100\% = 27,53\%$$

Система оценивания

1.	Составление общего вида уравнения окисления	2 балла
	кислородом	
2.	Определение одного металла – по 3 балла	6 баллов
3.	Определение содержания одного металла – по 3	6 баллов
	балла	
ИТС	ОГО	14 баллов

Задание 3.

1)

2) Бризантные (вторичные) — вещества с высокой бризантностью, которой соответствует большая скорость распространения взрывной волны в веществе. От инициирующих отличаются меньшей чувствительностью, а их горение при сравнительно невысокой величине давления (которое, тем не менее, должно быть выше атмосферного) вполне может привести к детонации. 3)

$$C_{10}N_9H_7O_7 \longrightarrow 3,5CO + 6,5C + 3,5H_2O + 4,5N_2$$

Или иная реакция не подразумевающая распад с выделением газов без доступа кислорода.

Система оценивания

1.	За каждое вещество 2 балла	8 баллов
2.	За правильный ответ	2 балла
3.	За реакцию	2 балла
ИТ	00	12 баллов

Задание 4.

Вещество D – бензойная кислота – может быть использован как консервант. Принимается любой разумный пример использования.

Система оценивания

ИТОГО		10 баллов
2.	За ответ на вопрос	1 балл
1.	За каждое вещество 1 балл	9 баллов

Задание 5.

№	элемент оценивания	Критерий
n/n	жетент оценивания	критерии оценивания
1.	a) На аноде: 2Cl⁻ – 2e→Cl₂ ⁰ ;	За каждое
1.	на катоде: $2H^+ + 2e \rightarrow H_2^0$;	уравнение
	суммарное уравнение: $2\text{NaCl} + 2\text{H}_2\text{O} \xrightarrow{\text{электролиз}} 2\text{NaOH} + \text{H}_2 +$	полуреакции –
	суммарное уравнение: 2 NaCi + 2 H $_2$ O \longrightarrow 2 NaOi + H_2 + Cl_2 .	0,25 баллов;
	$O(12)$. 6) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	За каждое
	на катоде: $2H^+ + 2e \rightarrow H_2^0$;	суммарное
	суммарное уравнение: $2H_2O \xrightarrow{\text{электролиз}} 2H_2 + O_2$.	уравнение – 0,5
		баллов
	в) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	
	на катоде: $Cu^{2+} + 2e → Cu^{0}$;	
	суммарное уравнение: $2CuSO_4 + 2H_2O \xrightarrow{\text{электролиз}} 2Cu + O_2 +$	
	2H ₂ SO ₄ .	
	г) На аноде: $4OH^{-} - 4e \rightarrow O_{2}^{0} + 2H_{2}O$;	
	на катоде: $2H^+ + 2e → H_2^0$;	D 4.5
	суммарное уравнение: $2H_2O \xrightarrow{\mathfrak{I}_{2}} 2H_2 + O_2$.	Всего – 4 балла
2.	Полупроницаемая перегородка не позволяет смешиваться	
	продуктам электролиза на разнополярных электродах, поэтому	
	на аноде ОН ⁻ -ионы будут расходоваться, а Н ⁺ -ионы –	
	концентрироваться. На катоде, наоборот, ОН-ионы будут	
	концентрироваться, а Н+-ионы – расходоваться.	
	Соответственно, на аноде в ходе электролиза будет	1 60
	наблюдаться снижение рН, а на катоде – рост рН.	1 балл
	В природной воде может содержаться значительное количество хлоридов и тяжелых металлов, поэтому на катоде может	
	протекать осаждение металлов, а на аноде – выделение хлора.	1 балл
3.	Рассчитаем количество O ₂ (также участник может начат расчет	1 Oddid
٥.	с H_2 или сразу количество H_2^+):	
		0,5 баллов
	$n=rac{0.0429 \mathrm{A}*900}{96500 rac{\mathrm{K}\pi}{\mathrm{MO}\pi\mathrm{L}}*4}=0.0001$ моль.	- 0,0 0 0 milion
	Количество Н+, образовавшееся на аноде в 4 раза больше –	0,5 баллов
	0,0004 моль. Объем раствора 1 л. Тогда на аноде значение рН	,
	составляет:	0,5 баллов
	$pH = -lg(10^{-4}) = 4.$	
	На катоде в соответствии с уравнением полуреакции	
	образуется в 2 раза меньшее количество ОН - 0,0002 моль. С	0,5 баллов
	учетом объема раствора (1 л):	
	$[H^+] = \frac{10^{-14}}{[OH^-]} = 5 \cdot 10^{-11}.$	
	$pH = -\lg(5 \cdot 10^{-11}) = 10,3.$	0,25 баллов
		0,25 баллов
4	Помимо изменения значений рН вода, подвергнутая	
4.	электролизу, некоторое время (из условия задачи «двое суток»)	
	содержит некоторое количество растворенных кислорода	
	(анод) и водорода (катод), а, возможно, и атомарные кислород	

ИТОГО	10 баллов
пример).	
соды (участником может быть приведен другой адекватный	0,25 баллов
Такой же эффект может дать прием слабого раствора пищевой	
среду, поэтому нейтрализует кислоту желудочного сока.	
сока на слизистую пищевода. «Живая» вода имеет щелочную	0,25 баллов
в) Возникновение изжоги связано с попаданием желудочного	
адекватный пример).	
водорода (участником может быть приведен другой	0,25 баллов
Такой же эффект может дать промывание раны перекисью	
водой нейтрализует кислую среду.	,
бактерий, обеззараживанию раны. Затем обработка «живой»	0,25 баллов
б) Промывание раны также способствует уничтожению	
может быть приведен другой адекватный пример).	-,
например, уксусом раствором перекиси водорода (участником	0,25 баллов
Такой же эффект может дать полоскание горла подкисленным,	
среда способствует уничтожению бактерий.	0,20 0001100
а) При полоскании горла по-видимому кислая окислительная	0,25 баллов
соответственно.	
могут иметь окислительные и восстановительные свойства	
и водород («в момент выделения»). Поэтому анолит и католит	

Максимальный балл за все задания -50 баллов

КРИТЕРИИ ОПРЕДЕЛЕНИЯ ПОБЕДИТЕЛЕЙ И ПРИЗЕРОВ ЗАКЛЮЧИТЕЛЬНОГО ЭТАПА ОЛИМПИАДЫ ПО ХИМИИ

Степень диплома	Максимальный	Сумма баллов	
	балл	8-9 классы	10- 11 классы
Диплом I степени	50	40-50	48-50
(Победитель)			
Диплом II степени	50	32-37	36-47
(Призер)			
Диплом III степени	50	22-35	22-39
(Призер)			