МАТЕРИАЛЫ ЗАДАНИЙ СЕВЕРО-ВОСТОЧНОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП 2018-2019 УЧЕБНЫЙ ГОД

Заключительный этап -8 класс

Задание 1. Можно ли заменить буквы цифрами от 0 до 9 так, чтобы выполнялось равенство $C \times T \times O = \coprod \times M \times \Phi \times P \times A$. Разным буквам соответствуют разные цифры.

Задание 2. В вершинах правильного 2018-угольника расставлены числа: 2017 нулей и 1 единица. За один ход разрешается прибавить или вычесть по единице к числам в концах любой стороны многоугольника. Можно ли добиться того, чтобы все числа делились на 3?

Задание 3. В выпуклом четырёхугольнике ABCD: AB = AC = AD = BD и $\angle BAC = \angle CBD$. Найдите $\angle ACD$.

Задание 4. Решите уравнение в целых числах $x^2 + y^2 = 3xy$.

Задание 5. Сколькими способами можно разбить кучу из 100 камней на кучки так, чтобы количество камней в любых двух кучках отличалась не более чем на единицу?

Решения и критерии оценивания

Номер	Решение	Критерии
задачи		
1	Ответ : нет. Предположим, что такое	За правильное решение – 7
	возможно. Ни одна из цифр не равна 0,	баллов. Доказано что среди
	потому что тогда произведение с одной	данных цифр нет нуля – 1
	стороны равно 0, а с другой стороны	балл. Доказано, что нет нуля
	равенства - нет. Тогда все 8 букв – цифры	и $5-2$ балла.
	от 1 до 9, а значит, среди них есть все	
	цифры, кроме одной, потому среди них есть	
	5 или 7. Но тогда одно из произведений	
	делится на 5 (7), а другое – нет.	
	Противоречие.	
2	Ответ Нет. Раскрасим вершины в белый и	За правильное решение – 7
	чёрный цвета так, чтобы цвета	баллов, иначе -0 баллов.
	чередовались. Тогда разница между	
	суммой чисел в белых вершинах и суммой	
	чисел в чёрных вершинах изначально равна	
	1, а при любом ходе не меняется (к обеим	
	суммам прибавляется по 1). Предположим	
	противное. Тогда обе суммы делятся на 3,	
	т.к. все числа делятся на 3. Поэтому и их	
	разница делится на 3, но 1 не делится на 3.	
	Противоречие.	
	•	

3	Ответ: 70°. Решение: Треугольник <i>ABD</i>
	равносторонний, поэтому углы $\angle ABD =$
	$\angle BDA = \angle DAB = 60^{\circ}$. Обозначим $\angle BAC =$
	$\angle CBD = \alpha$, тогда $\angle ABC = 60^{\circ} + \alpha$. $AB =$
	AC , значит $\angle ACB = \angle ABC = 60^{\circ} + \alpha$.
	Сумма углов в треугольнике ABC равна $\alpha +$
	$(60^{\circ} + \alpha) + (60^{\circ} + \alpha) = 180^{\circ}, 3\alpha =$
	60° , $\alpha = 20^{\circ}$. Угол $\angle CAD = \angle BAD -$
	$\angle BAC = 60^{\circ} - 20^{\circ} = 40^{\circ}$. $AC = AD$, значит
	$\angle ACD = \angle ADC = \beta$, сумма углов в
	треугольнике $ACD \ 40^{\circ} + 2\beta = 180^{\circ}, 2\beta =$
	140° , $\angle ACD = \beta = 70^{\circ}$.
	•
4	0

За правильное решение – 7 баллов. Найден угол $\angle BAC = \angle CBD = 20^{\circ} - 4$ балла.

4 OTBET: x = y = 0.

Решение: Если оба числа не равны 0, разделим числа х и у на их наибольший общий делитель, получатся взаимно простые числа а и b. Правая часть уравнения делится на 3, значит и левая тоже. Квадрат целого числа может давать остаток 0 или 1 при делении на 3, значит, a^2 и b^2 делятся на 3, поэтому a и b делятся на 3. Противоречие, потому что а и b взаимно просты и имеют общий делитель 3, больший 1.

За правильное решение -7 баллов. Только за правильный ответ -1 балл. Замечено, что x и y делятся на 3-3 балла.

5 Ответ: 99.

Решение: Докажем, что для любого k от 2 до 100 кучу можно разбить на к таких кучек единственным образом. 100 = qk + r, где q и r – неполное частное и остаток 100 при делении на к соответственно. Пусть есть куча, в которой не больше q-1 камня, то в оставшихся k-1 кучах не меньше 101q = q(k-1) + (r+1) камней. Тогда в какой-то куче не меньше q + 1 камня, ведь иначе камней в k-1 кучах будет не больше q(k-1), что меньше q(k-1) + (r+1) = 101 - q. Нашлись две кучи, не подходящие по условию (в которой не меньше q + 1 и в которой не больше q - 1). Противоречие. Пусть есть куча, в которой не менее q + 2 камней. Тогда в оставшихся k-1 кучах камней не больше 99-q. Тогда в какой-то куче не больше q камней, ведь иначе камней в k-1 кучах было бы не меньше (k-1)(q+1) = (kq+k)-1За правильное решение -7 баллов. За правильный ответ (99) - 1 балл. За ответ (100) тоже ставить 1 балл.

q > (kq+r)-1-q > 100-1-q = 99-q. Нашлись две кучи, в которых количества камней отличаются хотя бы на 2. Тогда во всех кучах q или q+1 камень. Пусть куч с q камнями t, тогда с q+1 камнями k-t, всего камней 100=qt+(q+1)(k-t)=qt+qk-qt+k-t=(qk+r)-r+k-t=100-r+k-t, т.е. способ единственен.