Задачи по информатике.

Задача 1

- **B1.** Решить уравнение в системе счисления $113_x + 323_x = 441_x$
- **В2.** Решить уравнение в системе счисления $443_x + 323_x = 1066_x$
- **В3.** Решить уравнение в системе счисления $235_x + 345_x = 613_x$
- **В4.** Решить уравнение в системе счисления $414_{\rm r} + 214_{\rm r} = 631_{\rm r}$
- **В5.** Решить уравнение в системе счисления $606_x = 259_x + 369_x$
- **В6.** Решить уравнение в системе счисления $220_x + 242_x = 570_x$

Задача 2

В1. В электронном табло «бегущая строка» длина строки табло составляет 10 знакомест, символы, отображаемые в знакоместах, сдвигаются на 1 влево каждые 2 секунды. Исходно табло пустое. Начальным моментом показа будем считать момент появления первого символа на крайнем правом знакоместе. По прошествии двух секунд показа, этот символ сдвинется на одно знакоместо влево, а на его месте отобразится второй символ сообщения. Затем, каждые две секунды имеющиеся символы сдвигаются на одно знакоместо влево, а на освободившемся крайне правом знакоместе появляется новый символ, пока сообщение не закончилось. Если сообщение закончилось, то при очередном сдвиге, крайне правое знакоместо становится пустым, через 2 секунды пустыми окажутся два знакоместа в конце табло и так далее, пока все табло не станет пустым. Этот момент (когда табло опустело) будем считать завершением показа сообщения.

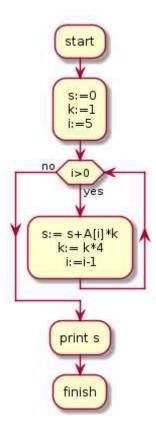
Символы, отображаемые в бегущей строке, берутся из набора из 40 различных символов, каждый из которых может выводиться красным или зеленым цветом. Сообщение хранится в памяти как последовательность нулей и единиц: каждый цвет каждого символа из набора кодируется двоичным кодом. Все символы кодируют одинаковым и минимально возможным количеством бит.

Для хранения сообщения в памяти табло отведено **X** байт. Известно, что максимальная продолжительность показа сообщения с момента появления первого символа, до момента исчезновения последнего символа составляет 98 секунд. Другими словами, самое большое сообщение, которое может поместиться в память табло, будет показано за 98 секунд. Определить память табло в байтах.

Ответ: 35 байт (40 символов в сообщении).

В2. В электронном табло «бегущая строка» длина строки табло составляет 10 знакомест, символы, отображаемые в знакоместах, сдвигаются на 1 влево каждые 2 секунды. Исходно табло пустое. Начальным моментом показа будем считать момент появления первого символа на крайнем правом знакоместе. По прошествии двух секунд показа, этот символ сдвинется на одно знакоместо влево, а на его месте отобразится второй символ сообщения. Затем, каждые две секунды имеющиеся символы сдвигаются на одно знакоместо влево, а на освободившемся крайне правом знакоместе появляется новый символ, пока сообщение не закончилось. Если сообщение закончилось, то при очередном сдвиге, крайне правое знакоместо становится пустым, через 2 секунды пустыми окажутся два знакоместа в конце табло и так далее, пока все табло не станет пустым. Этот момент (когда табло опустело) будем считать завершением показа сообщения.

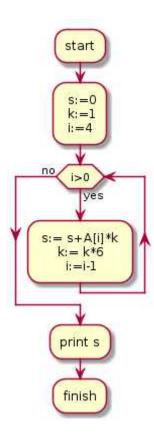
Символы, отображаемые в бегущей строке, берутся из набора из 50 различных символов, каждый из которых может выводиться красным или зеленым цветом. Сообщение хранится в памяти как последовательность нулей и единиц: каждый цвет каждого символа из набора кодируется двоичным кодом. Все символы кодируют одинаковым и минимально возможным количеством бит.


Для хранения сообщения в памяти табло отведено **X** байт. Известно, что максимальная продолжительность показа сообщения с момента появления первого символа, до момента исчезновения последнего символа составляет 146 секунд. Другими словами, самое большое сообщение, которое может поместиться в память табло, будет показано за 146 секунд. Определить память табло в байтах.

Ответ: 56 байт (64 символа в сообщении).

Задача 3

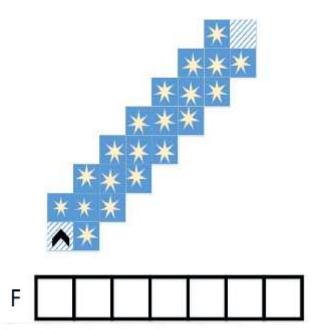
В1. На рисунке блок-схема алгоритма. На вход алгоритму был подан массив A из пяти целых положительных чисел, таких что $0 \le A[I] \le 3$ для всех I. Нумерация элементов массива начинается с I. Найдите значения элементов этого массива, если известно, что после выполнения алгоритма получилось значение переменной s = 935. В ответе укажите через значения элементов массива в порядке возрастания индексов.


Ответ: 3 2 2 1 3

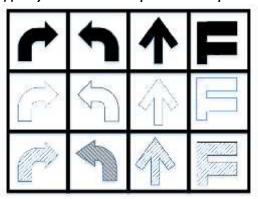
Задача 3

В2. На рисунке блок-схема алгоритма. На вход алгоритму был подан массив **A** из четырех целых положительных чисел, таких что $0 \le A[i] \le 5$ для всех **i**. Нумерация элементов массива начинается с **1**. Найдите значения элементов этого массива, если известно, что после выполнения алгоритма получилось значение переменной **s=321**. В ответе укажите через значения элементов массива в порядке возрастания индексов.

Ответ: 1 2 5 3

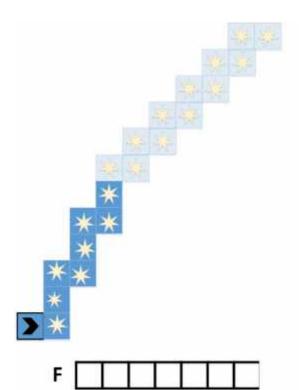

Задача 4.

- **В1.** Роботу-стрелке необходимо собрать все звездочки. Роботу-стрелке доступны 4 команды:
 - команды поворота на месте налево или направо,
 - команда одного шага вперед;
 - команда вызова функции F.

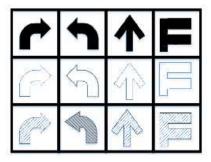

Кроме этого указанные команды могут выполняться на любой клетке, на заштрихованной или на прозрачной. Черные команды выполняются на любой клетке. Прозрачные и заштрихованные команды могут быть выполнены только на клетках соответствующего цвета.

Для написания программы для робота-стрелки доступно 7 ячеек памяти в функции F. Команды можно рекурсивно повторять, если в качестве команды вызвать саму функцию F.

Доступные команды приведены на рис. 2.



- **В2.** Роботу-стрелке необходимо собрать все звездочки. Роботу-стрелке доступны 4 команды:
 - команды поворота на месте налево или направо,
 - команда одного шага вперед;
 - команда вызова функции F.


Кроме этого указанные команды могут выполняться на любой клетке, на заштрихованной или на прозрачной. Черные команды выполняются на любой клетке. Прозрачные и заштрихованные команды могут быть выполнены только на клетках соответствующего цвета.

Для написания программы для робота-стрелки доступно 7 ячеек памяти в функции F. Команды можно рекурсивно повторять, если в качестве команды вызвать саму функцию F.

Поле приведено на рис. 1

Доступные команды приведены на рис. 2.

B1. Написать программу определяющую является ли многоугольник выпуклым по заданным координатам вершин.

Входные данные:

Первая строка — количество вершин многоугольника n. Последующие n строк — пары координат вершин (x, y).

Выходные данные:

В случае если многоугольник является выпуклым вывести $\bf 1$, в противном случае $\bf 0$. Если фигура не является многоугольником вывести -1.

Ограничения: Значения координат являются целочисленными

Пример:

Ввод:	Вывод:
5	
86 384	
241 389	0
339 245	
123 124	
143 268	

B2. Заданы координаты вершин невыпуклого многоугольника. Необходимо найти такую вершину данного многоугольника, после перемещения которой на минимальное возможное расстояние многоугольник станет выпуклым.

Входные данные:

Первая строка — количество вершин многоугольника n. Последующие n строк — пары координат вершин (x,y).

Выходные данные:

Вывести порядковый номер перемещаемой точки. Отсчет порядковых номеров начинается с 1, первой точкой считается та, которая первой была подана на ввод.

Ограничения: Значения координат являются целочисленными

Пример:

Ввод:	Вывод:
5	
86 384	
241 389	5
339 245	
123 124	
143 268	

B3. Найдите в строке S длины N количество таких подстрок во фрагменте S[A, B], в которых содержащиеся подстроки содержат не более K нулей и K единиц.

Входные данные:

Первая строка: N, K

Вторая строка: Ѕ, содержащая только нули и единицы

Третья строка: А, В

Выходные данные:

Целое число подстрок.

Пример:

Ввод: 8 2 01110000 1 4

В4. Числа A и B выбираются случайным образом на промежутке [1, ..., N]. Найдите вероятность того, что наибольший общий делитель A и B будет равен B.

Входные данные:

Число: *N*

Вероятность, округленная до 5 знака после запятой.

:

3 0.55556

В5. С клавиатуры вводится последовательность натуральных чисел (не превосходящих 10000), по одному числу в строке. Количество чисел заранее не известно, однако не превышает 10000. Признаком окончания последовательности является ввод числа «0», при этом само число 0 не является частью входной последовательности.

Искомыми подпоследовательностями входной последовательности назовем такие подпоследовательности, которые удовлетворяют двум условиям:

- состоят только из чисел, все цифры которых делятся на четыре (0 считается делящимся на любое число);
- являются неубывающими (каждое последующее число больше либо равно предыдущему).

Вывести на экран максимальную длину искомой подпоследовательности. Если искомых последовательностей нет, то вывести число 0.

8	
2	
40	
4	
48	3
84	
2	
804	
0	
2	2
4	
16	
88	
88	4
88	
88	
0	

В6. На вход программе подаётся последовательность целых чисел. В первой строке находятся два числа M и N ($2 \le M, N \le 100$). В следующих N строках перечислено по M целых чисел (встречаются числа от 1 до 20). Необходимо найти все встречающиеся в таблице «плюсы». «Плюсом» считается набор из 5 равных друг другу соседних чисел: «центральное» число, и четыре вокруг него (сверху, слева, снизу и справа),

например:

1 5 0

5 5 5

1 **5** 3

Необходимо вывести на экран число встретившихся «плюсов». Если не удалось найти ни одного «плюса», то напечатать 0.

4 5 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1	2
2	2
4 5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 2 0 1 1	4

В7. На вход программе подаётся последовательность целых чисел. В первой строке находятся два числа M и N ($2 \le M, N \le 100$). В следующих N строках перечислено по M целых чисел (встречаются числа от 1 до 20). Необходимо найти все встречающиеся в таблице «буквы H». «Буквой H» считается набор из 7 равных друг другу соседних чисел в форме буквы H, например:

5 0 5 5 5 5 5 2 5

Необходимо вывести на экран число встретившихся «букв H». Если не удалось найти ни одной — напечатать 0.

4 5 1 0 1 4 1 1 1 1 1 0 1 0 1 0 0 0
1 0 1 4 1 1 1 1 1 0 1 0 1 0 0 0
1 1 1 1 1 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0
0 0 3 0
2
4 5
1 0 1 0
0 0 0 0
0 0 0 0 4
0 0 0 0
2 0 1 0

Задача 6.

- **В1.** Гоша делал презентацию по литературе и решил вставить в неё стихотворение. Но обычные стихотворения показались ему слишком скучными, поэтому он выбрал для своей презентации стих, в котором первые буквы строчек шли в алфавитном порядке подряд. Когда мальчик скопировал и вставил произведение в свою презентацию, в работе компьютера произошёл сбой, и все стихотворение оказалось напечатанным на слайде в одну строчку, а между буквами в словах появились знаки препинания, знаки математических действий, скобки. Помогите Гоше написать программу, которая поможет ему восстановить стихотворение в первоначальном виде, если известно, что в нем нет ни одного имени собственного.
 - Программа должна быть написана на одном из следующих языков программирования: Basic, Pascal, C, C++, Алгоритмический. Другие языки программирования не допускаются.
- **В2.** Вася писал сочинение и отошел попить чай на кухню. В это время его младший брат Миша вставил в текст математические выражения с числами и операциями сложения и вычитания, поскольку ему срочно нужно было решать контрольную по математике. Вася добрый брат и поэтому он решил написать программу, которая вычислит значения написанных братом выражений, но не смог. Помогите Васе написать программу, которая выполнит математические операции, не взирая на остальной текст, и посчитает результаты вычислений.
 - Программа должна быть написана на одном из следующих языков программирования: Basic, Pascal, C, C++, Алгоритмический. Другие языки программирования не допускаются.