10 класс

Задача 1. «Необычная кислота», 20 баллов

Класс соединений, к которым относится соединение X, был открыт в начале 30-х годов 20-го века. В настоящее время данные соединения применяются в качестве катализаторов в реакциях гидроформилирования алкенов. Вещество X представляет собой кислоту, с массовой долей водорода 0,514% и массовой долей кислорода 40,816%. Кроме того, эта кислота содержит элемент, образующий минерал А - бинарное соединение с кислородом. Массовая доля кислорода в этом минерале составляет 36,81%. Натриевая соль этой кислоты может быть получены в результате взаимодействия соединения Y, массовая доля кислорода в котором составляет 41,027%, со щелочью или металлическим натрием. При этом известно, что в реакцию с натрием соединение Y вступает в мольном отношении 1:2. Определите и назовите минерал А и соединение X. Изобразите его графическую формулу с указанием предполагаемой геометрии. Назовите соединение Y. Запишите реакцию Y со щелочью, если известно, что эта реакция является окислительно-восстановительной. Предложите способ синтеза Y из минерала А. С какой кислотой (по силе) можно сравнить соединение X?

Решение

Из массовых долей кислорода и водорода можно найти их мольное соотношение в соединении X. Оно составляет 1:5. Масса остатка составляет 115*n г/моль. При n=1 м.б. In, но он не может присоединить к себе 5 кислородов. N>1 не соответствует ни одному элементу. Таким образом в остаток входит как минимум два элемента.

Схема синтеза У из А:

 $MnO_2 + HCl = MnCl_2 + Cl_2 + H_2O$

 $MnCl_2 + CO = Mn_2(CO)_{10} + COCl_2$

HMn(CO)₅, октаэдр вокруг марганца.

 $13Mn_2(CO)_{10} + 44 NaOH = 2Mn(OH)_2 + 24NaMn(CO)_5 + 10Na_2CO_3 + 20H_2O$

Задача 2. «Циклы с циклами», 20 баллов

Изомеризацию ксилолов проводят в промышленности при температуре 500 °C в реакторах из нержавеющей стали с катализатором HZSM-5 в кислотной форме. При времени контакта с катализатором свыше 5 часов выход продуктов перестает меняться. Определите состав смеси (в массовых долях), полученной на выходе через 6 часов после введения в реактор 40 г п-ксилола. Как изменится результат, если в реактор в тех же условиях ввести 30 г м-ксилола?

Для справки: константа равновесия и термодинамические характеристики реакции связаны соотношением $\Delta_r G^0 = -RT lnK$, $\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0$. Стандартные энтальпии сгорания ксилолов составляют -4551,8 кДж/моль (мета-изомер), -4552,8 кДж/моль (орто- и пара-изомеры), энтропии - 357,69; 352,75 и 352,42 Дж/(К моль) для мета-, орто- и пара-изомеров, соответственно.

Решение

В системе протекают реакции

 Π -ксилол \leftrightarrow о-ксилол (1)

 Π -ксилол \leftrightarrow м-ксилол (2)

Определим термодинамические характеристки этих процессов:

(1)
$$\Delta_r H^0 = 0$$
, $\Delta_r S^0 = 0.33 \text{ Дж/K}$, $\Delta_r G^0 = -255.14 \text{ Дж}$

(2)
$$\Delta_r H^0 = 1000$$
 Дж, $\Delta_r S^0 = 0.27$ Дж/К, $\Delta_r G^0 = 79.13$ Дж

$$K = \exp(-\Delta_r G^0/RT); K_1 = 1,04; K_2 = 0.99$$

Тогда получаем следующие соотношения мольных долей ксилолов (мольные доли для изомеров равны массовым долям):

N(opto)/N(napa) = 1,04

 $N(Meta)/N(\pi apa) = 0.99$

Тогда ω (орто) = 0,343, ω (пара) = 0,330, ω (мета) = 0,327

При введении другого изомера ксилола состав равновесной смеси не изменится.

Задача 3. «Земля и луна». 20 баллов

Навеску *красной луны* массой 1,58 г мелко растерли с 1,28 г *земли* и нагрели при перемешивании до полного расплавления. Полученный плав охладили и обработали горячим 60%-ным раствором высшего гидроксида *безжизненного* элемента, затем к раствору добавили *желто-зеленоватый поташ* и прокипятили с обратным холодильником. К полученному раствору добавили водный раствор 4,76 г вещества, полученного действием *зловония* на *шотландскую деревню*.

- Напишите уравнения указанных в тексте задания реакций;
- Какая соль на последней стадии будет выпадать в осадок первой? Ответ аргументируйте. Указания к решению: подумайте, как должны влиять на растворимость солей (а) взаимодействие катиона и аниона в твердом веществе; (б) взаимодействие ионов с молекулами растворителя.

Решение.

Красный селен – Se₈. При сплавлении с теллуром он образует образуются цепи, в которых наблюдается взаимное замещение элементов:

1
/₄ Se₈ + Te = TeSe₂ (1)
TeSe₂ + 12HNO₃ = 2H₂SeO₃ + H₂TeO₃ + 12NO₂ + 3H₂O (2)
3H₂SeO₃ + KClO₃ = 3 H₂SeO₄ + KCl (3)
3 H₂TeO₃ + KClO₃ + 9H₂O = 3 H₆TeO₆ + KCl (4)
Sr + Br₂ = SrBr₂ (5)
SrBr₂ + H₂SeO₄ = SrSeO₄ + 2HBr (6)

 $SrBr_2 + H_6TeO_6 = SrH_4TeO_6 + 2HBr (7)$

В осадок первым должен выпадать селенат стронция – тетрагидротеллурат-ионы будут образовывать водородные связи с молекулами воды, энергия кристаллической решетки у гидротеллуратов меньше, чем у селенатов – оба этих фактора работают в одном направлении.

Задача 4. «Органическая соль». 20 баллов

Для исследования комплексообразования меди(II) органическим анионом, часто применяемым для синтеза металл-органических каркасных структур, была приготовлена соль X, хорошо растворимая как в воде, так и в полярных органических растворителях, таких как ацетонитрил и диметилформамид. Соль X синтезируют следующим способом: в водном растворе вещества D растворяют соединение B, плохо растворимое в воде. Затем, воду из раствора удаляют сушкой под вакуумом при температуре 50 $\,^{0}$ C. B результате

$$\begin{array}{c} C_{10}H_{8} \xrightarrow{o_{2}, v_{2}O_{5}, 400 \, {}^{\circ}C} A \xrightarrow{H_{2}O} B \\ & & \\ C_{2}H_{5}CI \xrightarrow{NH_{3}} C \xrightarrow{PACTBOP} D \end{array}$$

образуется крайне гигроскопичная белая кристаллическая соль. Для идентификации полученного соединения, был проведен элементный анализ СНN, который показал, что массовые доли углерода, водорода и азота составляют 67.92, 10.37 и 6.60 %,

соответственно. По данным масс-спектроскопии, молярная масса соединения X составляет 424 г/моль. Схема синтеза соединений B и D приведена ниже. При синтезе соединения C реагент C_2H_5Cl берётся B избытке. Соединение $C_{10}H_8$ получают из каменноугольной смолы.

- 1) Приведите структурные формулы органических соединений A-D, X и уравнения химических реакций.
- 2) Почему испарять воду из раствора вещества X следует при низкой температуре? Соединение X способно образовывать комплексы c ионом меди(II) в растворе ацетонитрила (CH_3CN) в соотношении металл:лиганд = 1:1, 1:2, 1:3.

3) Приведите структурные формулы образующихся комплексов в ацетонитриле, учитывая, что координационное число иона меди(II) равно 6 в данных комплексах.

Решение

1. Заметим, что сумма массовых долей углерода, водорода и азота составляет менее 100%. Следовательно, в составе может быть ещё элементы. Исходя из схемы синтеза соединения X, можно сделать вывод, что в составе может быть только кислород.

Массовая доля кислорода ω %(O₂) = 100 % - (67.92+ 10.37 + 6.60 %) = 15.11 %

Исходя из массовых долей кислорода, углерода, водорода и азота и молярной массы соединения X можно рассчитать его брутто-формулу: $C_{24}H_{44}O_4N_2$

 $C_{10}H_8$ получают из каменноугольной смолы, то можно предположить, что $C_{10}H_8$. Очевидно, что C_2H_5Cl - хлорэтан.

Уравнения реакций:

$$V_{2}O_{5}, 400 \, ^{0}C$$
 $V_{2}O_{5}, 400 \, ^{0}C$
 $V_{2}O_{5}, 400$

электролиз
$$2N(C_2H_5)_4Cl + 2H_2O \longrightarrow 2N(C_2H_5)_4OH + Cl_2 + H_2$$

2. Вещество D – гидроксид тетраэтиламмония легко разлагается при нагревании:

$$N(C_2H_5)_4OH$$
 t^0 $H_2C = CH_2 + N(C_2H_5)_3 + H_2O$

3. Необходимо помнить, что растворитель также может координироваться к иону металла. Так, молекулы ацетонитрила CH₃CN координируются к иону меди(II) азотом. Координационному числу соответствует октаэдрическое окружение.

Задача 5. «Изотопная метка». 20 баллов

Неизвестное органическое вещество \mathbf{X} имеет следующий элементный состав: C - 18.47%; H - 0.78%; O - 36.92%. Оставшаяся масса - 43.83%, приходится на элемент, существующий

как простое вещество в виде двухатомной чрезвычайно токсичной молекулы. Само соединение \mathbf{X} является малоустойчивым и проявляет слабые кислотные свойства. Одним из методов его получения является реакция сильной органической кислоты с перекисью водорода. Установите структуру вещества \mathbf{X} , а также всех, зашифрованных в нижеуказанной цепочке органических соединений с учетом стереохимии. Обратите внимание, что соединения \mathbf{C} и \mathbf{H} относятся к одному классу органических веществ.

Решение