Отборочный этап 5-8 класса. 2 тур (приведен один из вариантов заданий)

1. Теоретические основы информатики, множественный выбор. [1 балл]

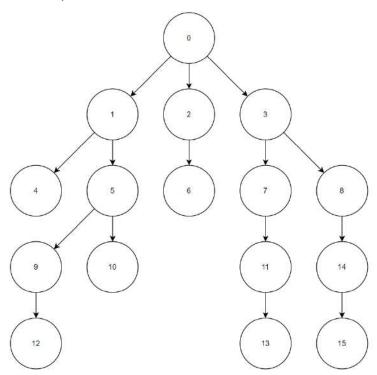
[Система контроля версий]

Используя поиск информации в глобальной сети Интернет определите, какие из предложенных команд git существуют? Выберите все верные варианты ответа.

- 1. git reset
- 2. git status
- 3. git delete
- 4. git sort
- 5. git change all

Ответ: 12

2. Теоретические основы информатики, единичный выбор. [1 балл] [Средства разработки]


Используя поиск информации в глобальной сети Интернет определите, что из предложенного ниже не является IDE? Выберите верный вариант ответа.

- 1. Visual Studio
- 2. VirtualBox
- 3. PyCharm
- 4. Clion
- 5. Android Studio

Ответ: 2

3. Анализ кода. [2 балла] [Деревья]

Вам дано графическое представление дерева:

Деревом называется граф иерархической структуры, дерево не содержит циклов, между двумя вершинами может быть только один путь.

Вершина дерева – уникальный объект дерева.

Между двумя вершинами может быть только одна связь.

Если из вершины А выходит связь в вершину В, то вершина А является родителем вершины В.

Корень – главная вершина дерева, имеет номер 0.

Глубина вершины – количество связей в пути от корня до вершины.

Для хранения информации о дереве решили использовать два массива:

Массив d имеет длину 16 и d[i] – глубина вершины с номером i. Например d[11]=3.

Массив р имеет длину 16 и р[i] – родитель вершины с номером і. Например р[11]=7.

Корень имеет глубину 0 и является родителем самого себя. Таким образом p[0]=0, d[0]=0.

Вам дан алгоритм. Так же Вам известно, что а и b – номера вершин дерева.

```
Алг
Нач
 цел: a = 11, b = 15
| если d[a] < d[b] то
| | t = a
| a = b
| b = t
 всё
 нц пока d[a] > d[b]
 | a = p[a]
 ΚЦ
 нц пока а != b
 | a = p[a]
 | b = p[b]
 КЦ
 Вывод а
Кон
```

Укажите, что выведет представленный выше алгоритм, зная структуру дерева.

Ответ: 3

4. Электронные таблицы, моделирование. [2 балла] [Длинные формулы]

Дан фрагмент электронной таблицы в режиме отображения формул:

	Α	В	C	D
1	=CУММ(B2:V17)	0	=B1+1	
2	0	=OCTAT(
3	=A2+1	ЕСЛИ(И(2 <= B\$1; B\$1 <= 10; 4 <= \$A2; \$A2 <= 7); 1; 0) +		
4		ЕСЛИ(И(9 <= B\$1; B\$1 <= 16; 7 <= \$A2; \$A2 <= 12); 1; 0) +		
5		ECЛИ(N(\$X\$1 <= B\$1; B\$1 <= \$X\$1 + \$Y\$1; \$X\$1 <= \$A2; \$A2 <= \$X\$1 + \$Z\$1); 1; 0);2)		
6				

Ячейку C1 скопировали во все ячейки диапазона D1:V1, ячейку A3 скопировали во все ячейки диапазона A4:A17. Ячейку B2 скопировали во все ячейки диапазона B2:V17.

Значение ячейки Y1 равно 4, ячейки Z1 равно 2.

После перевода таблицы в режим отображения чисел значение ячейки А1 стало равно 75.

Найдите все возможные целые неотрицательные значения ячейки X1, меньше 12. В ответе укажите все варианты ответа в порядке возрастания через запятую без пробелов.

Ответ: 3,6,11

5. Моделирование. [3 балла] [Эффективное использование трафика]

Вам дана сеть с распределенной передачей данных. В сети есть:

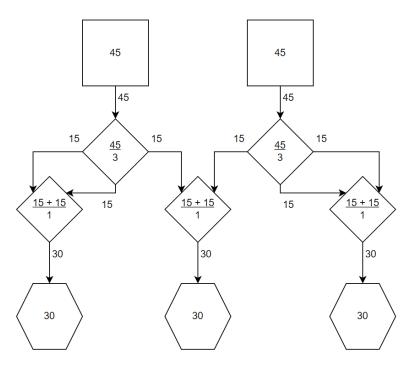
1) Источники данных, способные отсылать в сеть 120 Мбит данных в секунду каждый. К источнику может быть подключено только одно сетевое подключение.

- 2) Потребители данных, способные принимать 45 Мбит данных в секунду. В потребитель может входить только одно сетевое подключение.
- 3) Сетевые подключения, пропускная способность которых не более 200 Мбит/с для каждого.
- 4) Коммутаторы, способные соединить до 4 сетевых подключений и перераспределить передаваемые данные. В коммутаторе складываются все входящие потоки данных и распределяются поровну между выходящими сетевыми соединениями. У самих коммутаторов нет ограничения на пропускную способность.

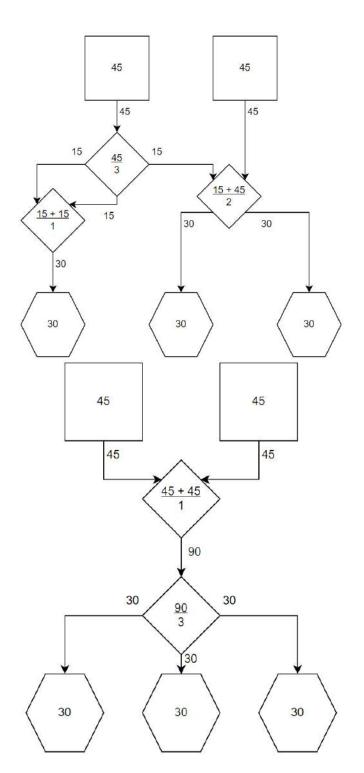
В данной сети данные идут строго от источников к потребителям. Если до потребителя дошел поток данных, превосходящий его возможности приёма, избыточные данные просто потеряются.

Вам нужно сконструировать минимальную (по количеству источников, потребителей и коммутаторов) схему, в которой весь поток данных от источников будет доставляться в полном объёме потребителям без потерь, и все потребители будут получать максимальные потоки данных, которые они могут принять. В ответе укажите количество источников данных, потребителей данных и коммутаторов через запятую без пробелов в указанном порядке.

Ответ считается минимальным, если нельзя получить меньшую сумму количества источников данных, потребителей данных и коммутаторов так, чтобы все даные от источников без потерь потреблялись потребителями и все потребители получали бы максимально возможные для них потоки данных.


Примеры:

Квадраты – источники данных


Ромбы – коммутаторы

Шестиугольники – потребители данных

В примерах источники данных производят 45 Мбит в секунду, а потребители потребляют 30 Мбит в секунду. На всех коммутаторах представлены расчеты выходящих потоков данных: в числителе сумма входящих потоков, в знаменателе количество выходящих потоков.

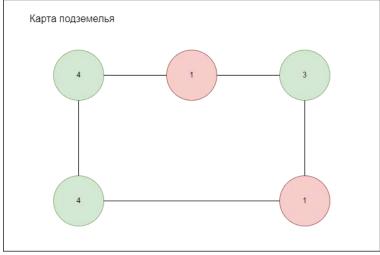
Если пропускная способность сетевого соединения равна 60 Мбит/с, то одна из схем сети может выглядеть как изображено на рисунке слева. Но данная схема не является минимальным ответом.

Если пропускная способность сетевого соединения равна 60 Мбит/с, то минимальный ответ может быть получен из схемы, изображенной слева. А ответ будет описан как 2,3,3

Если же пропускная способность сетевого соединения будет равно 90 Мбит/с, то схема, представленная для сетевого соединения в 60 Мбит/с уже не будет являться минимальным ответом, так как можно уменьшить число коммутаторов как представлено на схеме слева.

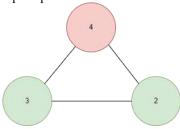
Ответ: 3,8,7

6. Моделирование по графу. [3 балла] [Лабиринт]

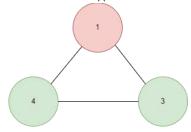

Вася попал в подземелье, которое состоит из комнат и туннелей между ними. В каждой комнате находится по 4 лампочки. В подземелье есть два типа комнат – красные и зеленые. В зеленых комнатах есть кнопка для включения лампочек, а в красных - нет.

С помощью нажатия на кнопку можно включать лампочки по следующему правилу: одно нажатие на кнопку включает по одной лапочке в текущей комнате и во всех соседних комнатах, если в какой-то комнате уже горят 4 лампочки, то при попытке включить еще одну лампочку в этой комнате потухнут 3 лампочки и останется гореть одна.

Вася может нажимать на кнопки в любом порядке, а также беспрепятственно передвигаться по подземелью и заходить в любую комнату.


Вам дан план подземелья. Комнаты изображены на плане как круги, а число внутри круга – количество горящих лампочек на момент попадания Васи в подземелье. Помогите Васе узнать минимальное количество нажатий на кнопки, чтобы в каждой комнате горело ровно по 4 лампочки.

В ответе укажите одно число – минимальное количество нажатий кнопок, чтобы в каждой комнате было зажжено 4 лампочки.


Соседней комнатой называется любая комната, которая соединена туннелем с текущей комнатой.

Пример:

Вася может нажимать кнопки только в зеленых комнатах.

Если Вася нажмет на кнопку в комнате с 3 лампочками, то потухнет 3 лампочки в красной комнате, и загорится по одной лампочки в каждой зеленой комнате.

Ответ: 5

7. Маски. [2 балла]

[Регулярные выражения]

Для задания регулярных выражений приняты следующие обозначения:

С	Любой неспециальный символ с соответствует самому себе. Специальными символами будем						
	считать только символы [,], $\{, \}, *, +, -, ?$ – эти символы не могут по условию данной задачи						
	встретится в тексте.						
[]	Любой символ из; допустимы диапазоны типа:						
	• а-z (последовательно идущие символы в алфавите),						
	• А-Z (последовательно идущие символы в алфавите),						
	• 0-9 (последовательно идущие цифры).						
	Диапазоны могут быть указаны друг за другом.						
r*	Ноль или более вхождений символа r , может применяться и для диапазонов.						
	Например, а* означает ноль или более вхождений символа а.						
r+	Одно или более вхождений символа г, может применяться и для диапазонов,						
	например [a-z]+ означает одно или более вхождений символов диапазона a-z в любом порядке.						
r1r2	За символом или диапазоном r1 следует символ или диапазон r2 .						
{ n }	Число вхождений n предыдущего выражения. Например, выражение [a-z]{3} соответствует						
	подстроке из трех латинских букв.						
{n, m}	Число вхождений от n до m предыдущего выражения. Например, выражение [a-z]{3, 5}						
	соответствует подстроке из не менее трех и не более пяти латинских букв.						

Дан исходный текст.

She sells seashells on the seashore.

The shells she sells are seashells, I am sure.

Then, I am sure she sells seashore shells.

Вам дано регулярное выражение **s**#+#[**a-z**]+#. Части данного регулярного выражения заменили на символы #. За одним символом # скрыто ровно одно выражение из предложенных ниже. Каждое выражение можно использовать только один раз.

- 1. [A-Z]
- 2. 1+
- 3. 1*
- 4. s
- 5. e
- 6. [a-z]

Помогите восстановить исходное регулярное выражение, чтобы с помощью него можно было найти только выделенные девять фрагментов текста.

She sells seashells on the seashore.

The shells she sells are seashells, I am sure.

Then, I am sure she sells seashore shells.

В ответе напишите номера выражений без пробелов и запятых, в том порядке, в котором они должны находиться в исходном регулярном выражении.

Ответ: 634

8. Моделирование по строке. [2 балла]

[Алгоритм с шифром]

Вам дана исходная строка s='CUCUMBER' и число k=2. Строку изменяются по следующему алгоритму:

- 1. Создают копию имеющейся строки s.
- 2. Над каждой буквой копии производят следующие операции:
 - а. Пусть \mathbf{x} номер этой буквы в алфавите. Если \mathbf{x} кратен \mathbf{k} % 10, то заменить эту букву на букву с номером (\mathbf{x} + \mathbf{k}) % 26. Нумерация букв в алфавите начинаются с нуля.
 - Иначе перейти к следующей букве.
- 3. К строке ѕ в конец дописывается измененная копия.
- 4. Число k = k * 2 1
- 5. Если k<=50, то перейти на шаг 1, иначе завершить алгоритм.

Пояснение: а % b – остаток от целочисленного деления числа а на b

Вам необходимо найти самую частую букву в строке после выполнения алгоритма

В ответе укажите искомую букву и количество её повторений в строке.

Пример ответа: А15

Ответ: Е96

9. Анализ таблиц. [1 балл]

[Стажировка]

Работодатель составил базу данных кандидатов, которые писали вступительные испытания на стажировку.

Данные о кандидатах:

- Id кандидата уникальный номер кандидата.
- ФИО фамилия, имя, отчество кандидата. Гарантируется, что ФИО уникальны.
- Курс номер курса, на котором сейчас учится кандидат.
- Университет название университета, в котором обучается кандидат.

Данные о прохождении вступительных испытаний:

- Id кандидата уникальный номер кандидата.
- Направление стажировки название стажировки, на которую подавался кандидат.
- Баллы количество баллов, которое набрал кандидат за вступительные испытания.
- Наличие мотивационного письма может принимать только значения «0» или «1». «0» означает, что у данного кандидата нет мотивационного письма, «1» мотивационное письмо есть.

Данные об успеваемости кандидата в ВУЗе.

- ФИО фамилия, имя, отчество кандидата. Гарантируется, что ФИО уникальны.
- Университет название университета, в котором обучается кандидат.
- Средний балл это средний балл по дисциплинам последнего семестра в ВУЗе.

Таблицы данных:

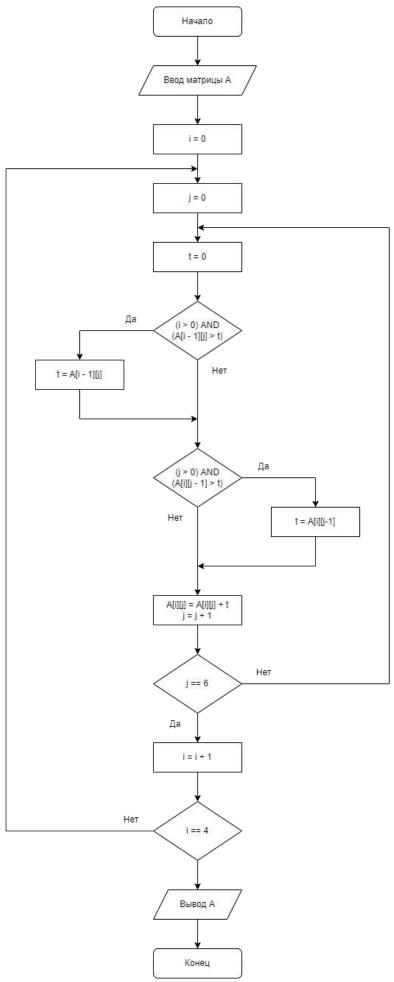
Id кандидата	ФИО	Курс	Университет	
885845 Сысоев Клим Олегович		2	Синергия	
249708	Кулагина Нелли Дмитрьевна	1	МГУ	
701911	Чернов Марк Германович	3	ИТМО	
750005	Котова Оксана Глебовна	2	ВШЭ	
627817	Корнилов Николай Мэлорович	4	ИТМО	
429364	Быкова Лиза Робертовна	5	ВШЭ	
316489	Белоусов Артур Владленович	1	Синергия	
685916	Журавлёв Лука Петрович	1	МФТИ	
351838	Анисимов Станислав Яковлевич	4	УРФУ	
862408	Миронов Мирон Якунович	1	ЮУрГУ	
160364	Казаков Ярослав Дмитрьевич	2	ЮУрГУ	
458412	8412 Пономарёва Надежда Агафоновна		МГУ	
627999	7999 Карпов Май Семенович		Синергия	
151094	094 Терентьева Санта Ивановна		МФТИ	
605858	8 Капустина Лили Федотовна		ИТМО	
157016	Миронова Лилу Артемовна		ВШЭ	
417320			УРФУ	
269395	269395 Стрелкова Ираида Аристарховна		ИТМО	
436432 Авдеев Вальтер Анатольевич		2	Синергия	
517899 Михеев Людвиг Ефимович		5	Синергия	
895255	255 Савина Аэлита Германовна		ВШЭ	
248665	Зиновьева Наталья Платоновна	5	УРФУ	
460323	Исаева Анна Якововна	5	УРФУ	
131636	Гусев Людвиг Владленович	3	МГУ	
378539 Киселёв Велор Онисимович		5	МФТИ	

Id кандидата	Направление	Баллы	Наличие мотивационного
	стажировки		письма
862408	Аналитика	4	1
701911	Аналитика	7	1
429364	Аналитика	6	1
316489	Аналитика	4	0
248665	Аналитика	25	0
157016	Аналитика	0	1
750005	Дизайн	18	1
627999	Дизайн	6	0
458412	Дизайн	12	1
436432	Дизайн	24	1
151094	Дизайн	4	0
131636	Дизайн	20	0
685916	Разработка	22	0
460323	Разработка	12	1
417320	Разработка	19	1
378539	Разработка	12	1
269395	Разработка	15	0
249708	Разработка	3	1
160364	Разработка	16	0
895255	Тестирование	8	1
885845	Тестирование	8	0

627817	Тестирование	25	0
605858	Тестирование	3	1
517899	Тестирование	18	1
351838	Тестирование	11	1

ФИО	Университет	Средний балл
Быкова Лиза Робертовна	ВШЭ	4,16
Котова Оксана Глебовна	ВШЭ	4,18
Миронова Лилу Артемовна	ВШЭ	3,93
Савина Аэлита Германовна	ВШЭ	3,37
Капустина Лили Федотовна	ИТМО	4,45
Корнилов Николай Мэлорович	ИТМО	3,63
Стрелкова Ираида Аристарховна	ИТМО	3,47
Чернов Марк Германович	ИТМО	3,76
Гусев Людвиг Владленович	МГУ	3,91
Кулагина Нелли Дмитрьевна	МГУ	4,03
Пономарёва Надежда Агафоновна	МГУ	3,89
Журавлёв Лука Петрович	МФТИ	3,37
Киселёв Велор Онисимович	МФТИ	4,72
Терентьева Санта Ивановна	МФТИ	3,19
Авдеев Вальтер Анатольевич	Синергия	4,81
Белоусов Артур Владленович	Синергия	3,59
Карпов Май Семенович	Синергия	3,42
Михеев Людвиг Ефимович	Синергия	4,48
Сысоев Клим Олегович	Синергия	4,54
Анисимов Станислав Яковлевич	УРФУ	3,51
Белозёрова Татьяна Тимуровна	УРФУ	3,36
Зиновьева Наталья Платоновна	УРФУ	3,15
Исаева Анна Якововна	УРФУ	4,64
Казаков Ярослав Дмитрьевич	ЮУрГУ	4,42
Миронов Мирон Якунович	ЮУрГУ	3,19

Сколько кандидатов из топ-10 по результатам вступительного испытания имеют мотивационное письмо и средний балл больше 4,5?


Топ-10 по результатам вступительного испытания считаются первые 10 кандидатов, которые набрали наибольшее количество баллов.

Ответ: 1

10. Блок-схема. [3 балла] [Двумерный массив]

Для представленного ниже алгоритма известно, что на вход ему подали двумерный массив А. Нумерация элементов массива начинается с [0,0]. При обращении к элементам двумерного массива первая координата отвечает за номер строки, вторая – номер столбца. Значения массива А представлены ниже в виде таблицы:

3	57	40	16	6	77
84	55	98	36	76	51
62	66	36	11	76	70
1	94	35	5	18	82

Найдите, чему станет равно A[3][5] после окончания работы алгоритма.

Ответ: 580