Всероссийская олимпиада школьников «Миссия выполнима. Твоё призвание — финансист!» Предмет: «Математика»

1	2	3	4	5	6	7	8	Σ	Проверяющий

ОЧНЫЙ ЭТАП

10 класс

Вариант 1

Работа рассчитана на 240 минут, она содержит 8 заданий. Решать и оформлять решения заданий можно в любом порядке. Численные ответы не округлять.

- 1. (10 баллов) Докажите, что для любого натурального n существует натуральное число, которое больше своей суммы цифр в $11 \dots 11$ раз.
- 2. (10 баллов) Решите уравнение: $2021x^3 + 2022x^2 + 2022x + 674 = 0$.
- 3. (12 баллов) Два прямоугольника ABCD и AEFG имеют общую вершину A и расположены на плоскости так, что точки B, E, D и G лежат на одной прямой (в указанном порядке). Пусть прямые BC и GF пересекаются в точке T, а прямые CD и EF в точке H. Докажите, что точки A, H и T лежат на одной прямой.
- 4. (12 баллов) Пусть m и n натуральные числа. Докажите, что число $5^n + 5^m$ можно представить в виде суммы двух точных квадратов тогда и только тогда, когда число n m чётное.
- 5. (12 баллов) Две окружности $C_1(O_1)$ и $C_2(O_2)$ с различными радиусами пересекаются в точках A и B. Касательная из точки A к C_1 пересекает касательную из точки B к C_2 в точке M. Докажите, что окружности из точки M видны под одинаковыми углами. (Говорят, что окружность видна из точки вне ее под углом α , если касательные, проведенные из этой точки к окружности, образуют угол α).
- 6. (14 баллов) Пусть x_k положительный корень уравнения $x^k-x-1=0$. Докажите, что $x_{25}<\frac{x_{20}+x_{30}}{2}$
- 7. (14 баллов) В комнате стоят два ящика. В первом лежат n белых и m черных шаров, во втором достаточно много черных. Из первого ящика наугад вынимают два шара. Если они одного цвета, то черный шар из второго ящика перекладывают в первый, если шары разного цвета, то белый шар возвращают в первый ящик. Так поступают до тех пор, пока в первом ящике не останется один шар. С какой вероятностью он будет белым?
- 8. (16 баллов) Клетки шахматной доски 12×12 раскрашены в 72 цвета так, что в каждый цвет покрашены ровно две клетки. Докажите, что на этой доске можно расставить 12

Всероссийская олимпиада школьников «Миссия выполнима. Твоё призвание – финансист!» Предмет: «Математика»

ладей так, чтобы они стояли на клетках разного цвета и никакие две из них не били друг друга. Две ладьи бьют друг друга, если они стоят в одной горизонтали или в одной вертикали доски.

Всероссийская олимпиада школьников «Миссия выполнима. Твоё призвание — финансист!» Предмет: «Математика»

1	2	3	4	5	6	7	8	Σ	Проверяющий

ОЧНЫЙ ЭТАП

10 класс

Вариант 2

Работа рассчитана на 240 минут, она содержит 8 заданий. Решать и оформлять решения заданий можно в любом порядке. Численные ответы не округлять.

- 1. (10 баллов) Докажите, что для любого натурального n существует натуральное число, которое больше своей суммы цифр в $11 \dots 11$ раз.
- 2. (10 баллов) Решите уравнение: $2021x^3 2022x^2 + 2022x 674 = 0$.
- 3. (12 баллов) Два прямоугольника ABCD и AEFG имеют общую вершину A и расположены на плоскости так, что точки B, E, D и G лежат на одной прямой (в указанном порядке). Пусть прямые BC и GF пересекаются в точке T, а прямые CD и EF в точке H. Докажите, что точки A, H и T лежат на одной прямой.
- 4. (12 баллов) Пусть m и n натуральные числа. Докажите, что число $5^n + 5^m$ можно представить в виде суммы двух точных квадратов тогда и только тогда, когда число n m чётное.
- 5. (12 баллов) Две окружности $C_1(O_1)$ и $C_2(O_2)$ с различными радиусами пересекаются в точках A и B. Касательная из точки A к C_1 пересекает касательную из точки B к C_2 в точке M. Докажите, что окружности из точки M видны под одинаковыми углами. (Говорят, что окружность видна из точки вне ее под углом α , если касательные, проведенные из этой точки к окружности, образуют угол α).
- 6. (14 баллов) Пусть x_k положительный корень уравнения $x^k-x-1=0$. Докажите, что $x_{16}<\frac{x_{10}+x_{40}}{2}.$
- 7. (14 баллов) В комнате стоят два ящика. В первом лежат n белых и m черных шаров, во втором достаточно много белых. Из первого ящика наугад вынимают два шара. Если они одного цвета, то белый шар из второго ящика перекладывают в первый; если шары разного цвета, то черный шар возвращают в первый ящик. Так поступают до тех пор, пока в первом ящике не останется один шар. С какой вероятностью он будет белым?
- 8. (16 баллов) Клетки шахматной доски 10×10 раскрашены в 50 цветов так, что в каждый цвет покрашены ровно две клетки. Докажите, что на этой доске можно расставить 10

Всероссийская олимпиада школьников «Миссия выполнима. Твоё призвание – финансист!» Предмет: «Математика»

ладей так, чтобы они стояли на клетках разного цвета и никакие две из них не били друг друга. Две ладьи бьют друг друга, если они стоят в одной горизонтали или в одной вертикали доски.