

Всероссийская олимпиада школьников «Миссия выполнима. Твое призвание-финансист!»

ЗАДАНИЯ, РЕШЕНИЯ, КРИТЕРИИ ЗАКЛЮЧИТЕЛЬНЫЙ (ОЧНЫЙ) ЭТАП

Математика 10 класс, 2016/2017 учебный год

Задание 1. (10 баллов)

Сколько существует натуральных чисел n не превосходящих 2017, таких что квадратный трехчлен $x^2 + x - n$ раскладывается на линейные множители с целочисленными коэффициентами?

Решение.

По условию задачи $x^2+x-n=(x-a)(x-b)$. Следовательно, ab=-n, то числа a и b разных знаков и не равны нулю. Без ограничения общности будем считать, что $a \ge 0$. Поскольку $a+b=-1 \Rightarrow b=-1-a$, то

$$ab = -n = a(-1-a) \Rightarrow a^2 + a = n \le 2017 \Rightarrow a \le 44$$
.

Таким образом, получаем 44 пары чисел a и b, удовлетворяющих заданным условиям. *Ответ*. 44.

Содержание критерия	Оценка	Баллы
Полное решение.	+	10
Все логические шаги решения приведены, в том числе оценка для одного из корней и связь между корнями квадратного трехчлена. Ответ неверный.	±	7
Верно дана оценка для одного из корней квадратного трехчлена. Ответ неверный или отсутствует.	+/2	5
Показана связь между n и корнями квадратного трехчлена. Приведены неверные оценки для одного из корней и/или количества чисел n , удовлетворяющих условию задачи.	Ŧ	2
Решение не соответствует ни одному критерию, описанному выше.	-/0	0
Максимальный балл	•	10

Задание 2. (10 баллов)

В тридесятом государстве 29 февраля одного стародавнего года на ярмарке купец продавал сапоги-самоплясы за 2000 алтын. По правилам торговли, цена на товар корректируется каждое утро перед открытием. Цену можно увеличить на 10%, можно уменьшить на 1% или на 12% относительно цены предыдущего дня, а можно вообще не менять. При этом цена должна быть целым числом алтын, округлять ее нельзя. 1 апреля того же года боярин из торговой инспекции обнаружил, что у того же купца те же сапоги-самоплясы стоят 2017 алтын, и составил акт о нарушении правил торговли. Купец в ответ на это заявил, что никаких нарушений он не допускал. Кто из них прав?

Решение.

Прав боярин.

Если цена была равна s, то после изменения она должна составить $\frac{110}{100}s$, $\frac{99}{100}s$ или $\frac{88}{100}s$. При любом таком изменении новая цена должна делиться на 11. Число 9876543210 на 11 не делится, а потому оно не может быть получена с помощью нескольких таких изменений.

Ответ. Прав боярин.

Содержание критерия	Оценка	Баллы
Полное решение.	+	10
При решении задачи использовался метод перебора возможных		
изменений цены. Все варианты были представлены, но не	<u>±</u>	7
обосновано, что других вариантов нет. Ответ верный.		

При решении задачи использовался метод перебора возможных изменений цены. При этом один или два варианта не были представлены. Ответ верный.	+/2	5
При решении задачи использовался метод перебора возможных изменений цены. При этом более двух вариантов не было представлено. Ответ верный. Представлены формулы для всех возможных изменений цены. Ответ верный.	Ŧ	2
Решение не соответствует ни одному критерию, описанному выше.	-/0	0
Максимальный балл		10

Задание 3. (12 баллов)

Числовая последовательность такова, что $x_n = \frac{x_{n-1}}{5} + 4$ для всех $n \ge 2$. Найдите x_{2017} , если $x_1 = 6$.

Решение.

$$x_2 = \frac{x_1}{5} + 4 = \frac{6}{5} + 4 = 5 + \frac{1}{5}$$
.

$$x_3 = \frac{x_3}{5} + 4 = \frac{5 + \frac{1}{5}}{5} + 4 = 5 + \frac{1}{5^2}.$$

Докажем по индукции, что $x_n = 5 + \frac{1}{5^{1-n}}$ при всех натуральных n.

1)
$$n = 1$$
: $x_1 = 5 + \frac{1}{5^{1-1}} = 6$ - верно.

2) Пусть утверждение верно при n = k: $x_k = 5 + \frac{1}{5^{1-k}}$.

3)
$$n = k + 1$$
: $x_{k+1} = \frac{x_k}{5} + 4 = \frac{5 + \frac{1}{5^{1-k}}}{5} + 4 = 5 + \frac{1}{5^{1-(k+1)}}$.

Так как
$$x_n = 5 + \frac{1}{5^{1-n}}$$
, то $x_{2017} = 5 + \frac{1}{5^{-2016}}$

Ombem:
$$5 + \frac{1}{5^{-2016}}$$
.

Содержание критерия	Оценка	Баллы

Полное решение.	+	12
Выписаны несколько первых членов последовательности.		
Дополнительных обоснований не приведено или приведенные	+/2	6
обоснования неверные. Ответ верный.		
Выписаны несколько первых членов последовательности в	_	2
виде суммы 5 и дроби. Ответ отсутствует или неверный.	+	2
Решение не соответствует ни одному критерию, описанному	-/0	0
выше.	- /0	U
Максимальный балл		12

Задание 4. (12 баллов)

Какое из чисел больше
$$\frac{1}{2016} \left(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{2016}\right)$$
 или $\frac{1}{2017} \left(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{2017}\right)$?

Решение.

Обозначим

$$x = \frac{1}{2016} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2016} \right), \quad y = \frac{1}{2017} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2017} \right), \quad a = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2016} \right).$$
 Тогда
$$x = \frac{a}{2016}, \quad y = \frac{1}{2017} \left(a + \frac{1}{2017} \right), \quad x - y = \frac{a}{2016} - \frac{a}{2017} - \frac{1}{2017^2} = \frac{1}{2017} \left(\frac{a}{2016} - \frac{1}{2017} \right) > 0,$$

т.к. a > 1.

Ответ: первое число больше.

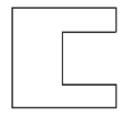
Содержание критерия	Оценка	Баллы
Полное решение.	+	12
Представлены все логические шаги решения. В результате вычислительной ошибки получен неверный ответ.	<u>±</u>	9
Показана связь между двумя сравниваемыми числами. При сравнении чисел допущены ошибки в алгебраических преобразованиях. Ответ приведен, возможно, неверный. Показана связь между двумя сравниваемыми числами. Отсутствует полное обоснование верного ответа.	+/2	6
При решении задачи использовался метод перебора возможных изменений цены. При этом более двух вариантов не было представлено. Ответ верный. Показана связь между двумя сравниваемыми числами. Ответа нет.	Ŧ	2
Решение не соответствует ни одному критерию, описанному выше.	-/0	0
Максимальный балл	·	12

Задание 5. (12 баллов)

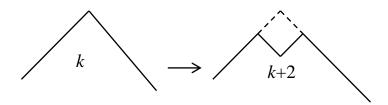
Для каких положительных целых n > 2 существует многоугольник с n вершинами (не обязательно выпуклый) такой, что каждая его сторона параллельна какой-либо другой его стороне?

Решение.

- 1. Если n четное, то такой многоугольник существует. Достаточно взять правильный n-угольник.
- 2. Для *n* = 3 и 5 такого быть не может. Действительно, никакие две стороны в треугольнике не параллельны. Если каждая из сторон пятиугольника была бы параллельна другой стороне, мы бы нашли три параллельные стороны, при этом две из них должны были бы пересекаться. Это невозможно.
- 3. Для n = 7 такой многоугольник существует. Пример приведен на рисунке.



Докажем по индукции, что для нечетного положительного числа n>5 искомый многоугольник существует. Пусть для некоторого целого k существует k-угольник, удовлетворяющий условию задачи. Выберем вершину, в которой внутренний угол многоугольника меньше 180° . Теперь отрежем маленький параллелограмм как показано на рис. 2. Мы получим (k+2)-угольник, удовлетворяющий условию задачи.



Ответ: при $n \neq 3$ и $n \neq 5$.

Содержание критерия	Оценка	Баллы
Полное решение.	+	12
Доказано, что при четном n такой многоугольник существует.		
Доказано, что $n \neq 3$ и $n \neq 5$. Приведен пример семиугольника,	+.	10
который удовлетворяет условию задачи. Доказательство, что		

подобный многоугольник существует при нечетных n больше 7		
неполное.		
Доказано, что при четном n такой многоугольник существует.		
Доказано, что $n \neq 3$ и $n \neq 5$. Приведен пример многоугольника	+	9
с нечетным числом сторон, который удовлетворяет условию	<u> </u>	
задачи.		
Доказано, что при четном n такой многоугольник существует.	+/2	6
Верно рассмотрены случаи при некоторых n .	Ŧ	2
Решение не соответствует ни одному критерию, описанному	-/0	0
выше.	/0	U
Максимальный балл	·	12

Задание 6. (14 баллов)

Натуральные числа a, b, c, d, и e являются последовательными членами арифметической прогрессии. Найдите наименьшее возможное значение числа c, если сумма b+c+d является полным квадратом, а сумма a+b+c+d+e является полным кубом.

Решение.

Поскольку b + d = 2c, то $3c = n^2$ для некоторого натурального n.

Следовательно, n делиться на 3 и $c = 3l^2$ для некоторого натурального l.

Поскольку a+b+d+e=4c, то $5c=m^3$ для некоторого натурального m.

Следовательно, m делиться на 5 и $c = 5^2 l^3$ для некоторого натурального l.

Наименьшее число, удовлетворяющее данным условиям равно $5^23^3 = 675$ *Ответ.* 675.

Содержание критерия	Оценка	Баллы
Полное решение.	+	14
Представлены основные логические шаги решения. В решении		
отсутствуют некоторые обоснования.	<u>±</u>	11
Ответ верный.		
Представлены основные логические шаги решения.		
Ответ неверный.	+/2	7
Решение содержит определенное продвижение в верном	+/2	,
направлении. Ответ верный.		
Решение в целом неверное или незаконченное, но содержит		
определенное продвижение в верном направлении.	_	
Ответ неверный или отсутствует.	<u> </u>	3
Ответ верный. Решение отсутствует или неверное.		
Решение не соответствует ни одному критерию, описанному	-/0	0
выше.	/0	U

Задание 7. (14 баллов)

В конференции принял участие 281 сотрудник из 7 различных филиалов фирмы. В каждой группе из шести участников конференции по меньшей мере двое были одного возраста. Докажите, что среди всех участников можно найти пятерых одного возраста, одного пола и из одного филиала фирмы.

Решение

По принципу Дирихле как минимум в одном филиале как минимум 41 участник и как минимум 21 из них одного пола. Требуется доказать, что по меньшей мере 5 из этих 21 участника одного возраста. Если это не так, то существует не более 4 участников из каждой возрастной группы. В группе из 21 человека как минимум 6 возрастных групп, и если мы возьмем по представителю из каждой возрастной группы, то очевидно получим противоречие с одним из условий задачи.

Содержание критерия	Оценка	Баллы
Полное решение.	+	14
Доказательство приведено.		11
Нет строгого обоснования отдельных фактов.	土	11
Доказательства нет.		3
Имеется определенное продвижение в верном напралении.	T	3
Решение не соответствует ни одному критерию, описанному	-/0	0
выше.	/0	U
Максимальный балл		14

Задание 8. (16 баллов)

Десять пиратов делят между собой золотые и серебряные монеты. Серебряных монет в два раза больше, чем золотых. Они разделили золотые монеты так, что разница между количеством золотых монет у любых двух пиратов не делится на 10. Докажите, что они не смогут разделить серебряные монеты подобным образом.

Решение.

Пусть a_1 – количество золотых монет у первого пирата, a_2 – у второго, и т.д. Так как a_i - a_j не делится на 10 для любых i и j, то числа a_1 , a_2 , ..., a_{10} должны давать различные остатки при делении на 10. Запишем a_i = $10k_i$ + l_i , где l_i – остаток a_i при делении на 10. Общее количество золотых монет равно

$$a_1 + a_2 + \dots + a_{10} = 10(k_1 + k_2 + \dots + k_{10}) + (l_1 + \dots + l_{10}).$$

Так как числа l_1, \dots, l_{10} - в точности числа $0, 1, 2, \dots, 9$ (только не обязательно в таком порядке), то их сумма равна 45. Значит всего золотых монет $10(k_1+k_2+\dots+k_{10})+45$.

Предположим, что пираты могут разделить серебряные монеты таким же образом. Как и раньше мы можем показать, что общее количество серебряных монет $10(m_1+m_2+\cdots+m_{10})+45$ для некоторых целых чисел m_1,m_2,\ldots,m_{10} .

Но общее число серебряных монет четно, получаем противоречие.

Содержание критерия	Оценка	Баллы
Полное решение.	+	16
Доказательство приведено.		12
Нет строгого обоснования отдельных фактов.	<u>±</u>	12
Доказательства нет.		
Доказано, что число золотых монет нечетно, а число	+/2	8
серебряных монет четно.		
Доказательства нет.		
Отмечено, но не доказано, что число золотых монет нечетно, а	Ŧ	3
число серебряных монет четно.		
Решение не соответствует ни одному критерию, описанному	-/0	0
выше.	/0	U
Максимальный балл		16