
Российская аэрокосмическая олимпиада школьников по физике

Председатель Координационного Совета Российской аэрокосмической одижимады школьников А.Н. Геращенко

II-й тур 10-й класс

- 1 (10 баллов). Мячик прыгает в комнате, поочередно ударяясь о стену, затем о пол, потом о противоположную стену и снова о пол, и т.д. При этом мячик движется туда и обратно по одной и той же траектории. Определите ширину комнаты, если мячик ударяется о стены на высоте h = 2 м от пола, а скорость мячика во время удара о стены равна v = 3 м/с. Сопротивление воздуха и размеры мячика не учитывать, удары мячика о пол и стены абсолютно упругие.
- **2** (30 баллов). Орбитальная станция движется по круговой орбите радиусом $R = 2R_3$, где $R_3 = 6370$ км – радиус Земли. Космонавт находится в открытом космосе. Оцените силу, действующую на страховочный трос, к которому пристегнут космонавт, полагая, что он некоторое время находится на максимальном удалении от Земли. Масса космонавта m = 100 кг много меньше массы станции, длина троса l = 100 м. Силой тяжести троса и гравитационным взаимодействием между станцией и космонавтом пренебречь.
- 3 (20 баллов). Коротышки из цветочного города изготовили воздушный шар с эластичной оболочкой и наполнили его гелием. Вылет шара состоялся теплым днем при температуре $t_0 = 27^{\circ}$ С и давлении $P_0 = 10^5$ Па. В полет отправилось N = 6 коротышек. С собой они взяли n = 10 мешков с песком. Вдруг коротышки заметили, что шар перестал подниматься. Оказалось, что клапан шара был закрыт неплотно, и исправить это коротышки смогли только после того, как из шара уже утекло $\alpha = 20\%$ массы гелия. Сколько мешков с песком нужно сбросить с шара, чтобы он снова начал подниматься? Масса оболочки шара $M_0 = 0.1$ кг, масса коротышки M = 0.05 кг, масса мешка с песком m = 0.025 кг, объем шара в начале полета $V_0 = 0.7 \text{ м}^3$. Молярная масса гелия $\mu_1 = 4 \cdot 10^{-3} \text{ кг/моль, молярная масса}$ воздуха $\mu_2 = 29 \cdot 10^{-3}$ кг/моль. Натяжением оболочки шара пренебречь. Давление и температуру окружающего воздуха считать постоянными.
- **4 (15 баллов).** В калориметре находится M=1 кг льда при температуре $t_0=0$ °C. В калориметр наливают m = 100 г воды при температуре кипения t = 100°C. После установления теплового равновесия всю воду из калориметра сливают в другую емкость, доводят до кипения и вновь наливают в калориметр. Сколько раз следует повторить такую процедуру, чтобы весь лед в калориметре растаял? Удельная теплоемкость воды c = 4.2 кДж/(кг·K), удельная теплота плавления льда $\lambda = 333$ кДж/кг. Теплоемкостью калориметра пренебречь.
- **5 (15 баллов).** Электрическое поле создает равномерно заряженный диск радиусом R = 14 мм. При этом напряженность поля на оси диска на расстоянии h = 0.1 мм от диска равна E = 100 В/м. Оцените напряженность электрического поля на расстоянии l = 2014 мм от центра диска.
- 6 (10 баллов). Три плоских зеркала расположены, как показано на рисунке. При этом зеркала 1 и 3 параллельны друг другу, а зеркало 2 им перпендикулярно. Через сколько отражений луч света, последовательно отразившись хотя бы по одному разу от каждого зеркала, изменит свое направление на противоположное? Луч распространяется в плоскости, перпендикулярной зеркалам. Ответ обосновать.

Российская аэрокосмическая олимпиада школьников по физике

«СОГЛАСОВАНО»
Предсе на гель Координационного Совета
Российской а эрокосмической отиминады школьников
_______А.Н. Геращенко

Структура билетов и критерии оценки Российской аэрокосмической олимпиады школьников по физике в 2014 году (заключительный этап)

Билет, выдаваемый школьнику, содержит **6** задач различной степени сложности по основным разделам физики: механика, молекулярная физика и термодинамика, электромагнетизм, оптика, атомная и ядерная физика. Каждый билет содержит две задачи средней сложности, две задачи повышенной сложности, одну сложную и одну нестандартную задачу. Таким образом, школьнику требуется продемонстрировать знания и умения решения задач разной сложности по темам из нескольких разделов физики. Задачи в билетах располагаются в соответствии с общепринятым порядком изучения основных разделов физики в школах.

Оценка работы складывается из баллов, полученных за каждую отдельную задачу. Максимальный вклад задачи средней сложности равен 10 баллам, повышенной сложности – 15, сложной – 20, нестандартной – 30. Максимальная оценка за работу 100 баллов.

За решение каждой задачи билета выставляется одна из следующих оценок:

- 1,0 задача решена правильно:
- 0,8 задача решена правильно и получен ответ в общем виде; есть ошибка в размерности полученной физической величины или арифметическая ошибка;
- 0,6 задача решена не полностью; имеются все необходимые для ее решения физические соотношения; есть ошибка в алгебраических преобразованиях;
- 0,4 задача решена не полностью; отсутствуют некоторые физические соотношения, необходимые для решения задачи;
- 0,2 задача не решена; в работе имеются лишь отдельные записи, относящиеся к решению данной задачи или к описанию явления, рассматриваемого в задаче;
- 0,0 решение задачи или относящиеся к нему какие-либо записи в работе отсутствуют.

За каждую задачу ставится балл, равный оценке, полученной за ее решение, умноженной на максимальный балл за данную задачу.

За работу в целом ставится оценка, равная сумме баллов, полученных за решение каждой задачи. Если сумма баллов равна нулю, то итоговая оценка за работу «1».

Председатель центральной методической комиссии олимпиады

Р.Ф. Ганиев

Российская аэрокосмическая олимпиада школьников по физике

Председатель Координационного Совета Российской дорокосмической олимпиады школьников

А.Н. Геращенко

Решение центрального предметного жюри Российской аэрокосмической олимпиады школьников по физике

- 1. Признать победителями заключительного этапа Российской аэрокосмической олимпиады школьников по физике в 2014 году участников заключительного этапа олимпиады, набравших в соответствии с утвержденными критериями оценки работ заключительного этапа 90 и более баллов.
- 2. Наградить победителей заключительного этапа Российской аэрокосмической олимпиады школьников по физике в 2014 году дипломами 1-й степени.
- 3. Признать призерами заключительного этапа Российской аэрокосмической олимпиады школьников по физике в 2014 году участников заключительного этапа олимпиады, набравших в соответствии с утвержденными критериями оценки работ заключительного этапа от 50 до 89 баллов.
- 4. Наградить призеров заключительного этапа Российской аэрокосмической олимпиады школьников по физике в 2014 году, набравших от 70 до 89 баллов, дипломами 2-й степени.
- 5. Наградить призеров заключительного этапа Российской аэрокосмической олимпиады школьников по физике в 2014 году, набравших от 50 до 69 баллов, дипломами 3-й степени.

Председатель центрального предметного		
жюри олимпиады по физике	yours	_ В.В.Озолин