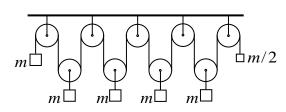

Решения и критерии оценивания решений задач Заключительного тура олимпиады «Росатом», 2021-2022 учебный год, физика, 10 класс

- 1. Скорость тела, брошенного с земли под некоторым углом к горизонту, оказалась направленной под углом $\alpha = 30^\circ$ к горизонту в моменты времени t_1 и t_2 , отсчитанные от момента броска. Найти дальность полета тела и максимальную высоту подъема. Ускорение свободного падения равно g. Сопротивлением воздуха пренебречь.
- **2**. Сопротивления резисторов в цепи, схема которой показана на рисунке, даны на схеме. Известно, что сила тока во внешней цепи составляет I=6 А. Найти силу тока, текущего по перемычке AB, от B к A. Сопротивлением проводов пренебречь.



3. Два груза с массами m и 4m подвешены на невесомых нерастяжимых нитях длиной l прикрепленных к одной точке горизонтального потолка. Между телами вставляют невесомый стержень длиной L, прикрепляют к ним и удерживают систему в таком положении, что стержень горизонтален

(см. рисунок). В некоторый момент времени тела отпускают. Найти их ускорения сразу после этого.

- **4.** В цилиндрическом сосуде под невесомым поршнем находится идеальный газ. Объем газа V_0 , абсолютная температура T_0 , давление газа равно внешнему давлению p_0 . Между поршнем и стенками сосуда действует сила трения. Газ в сосуде медленно нагревают, и при температуре $6T_0/5$ поршень начинает перемещаться. Газ нагревают до температуры $2T_0$, затем нагрев прекращают, и газ медленно остывает до первоначальной температуры. Построить график зависимости объема газа от его температуры для указанного процесса и найти объем и давление газа во всех состояниях, когда меняется характер процесса, происходящего с газом. Считать, что максимальная сила трения между поршнем и стенками сосуда не зависит от их температуры.
- **5.** Имеется девять одинаковых невесомых блоков, пять из которых неподвижны (их оси прикреплены к горизонтальному потолку), четыре подвижны и охватываются одной и той же невесомой нерастяжимой нитью. К осям подвижных блоков и к одному из концов

нити, охватывающей блоки, прикреплены пять тел с одинаковой массой m. Ко второму концу нити прикреплено тело массой m/2. Найти ускорения всех тел.

Решения

1. Поскольку траектория тела симметрична относительно верхней точки, время подъема $t_{no\partial}$ тела на максимальную высоту лежит ровно посередине между моментами t_1 и t_2 :

$$t_{no\partial} = \frac{t_2 + t_1}{2} \,, \tag{1}$$

а полное время движения $t_{nолн}$ есть удвоенное время (1)

$$t_{norm} = t_2 + t_1, \qquad (2)$$

Из формулы (1) и закона изменения скорости тела для равноускоренного движения, находим изменение вертикальной проекции скорости тела за время подъема на максимальную высоту:

$$0 = v_{0,y} - \frac{g(t_2 + t_1)}{2}$$

где $v_{0,y}$ - проекция вектора начальной скорости на вертикальную ось. Отсюда находим вертикальную проекцию начальной скорости тела

$$v_{0,y} = \frac{g\left(t_2 + t_1\right)}{2}$$

Горизонтальную проекцию начальной скорости можно найти из следующих соображений. Поскольку от момента t_1 до момента подъема на максимальную высоту (т.е. за время $(t_2-t_1)/2$) вертикальная проекция уменьшается до нуля, то применяя закон движения для скорости к этому этапу движения, получим

$$0 = v_{1,y} - \frac{g(t_2 - t_1)}{2}$$

где $v_{1,y}$ - вертикальная проекция вектора скорости тела в момент времени t_1 . Поэтому

$$v_{1,y} = \frac{g\left(t_2 - t_1\right)}{2}$$

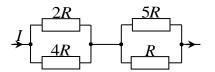
Поэтому горизонтальная проекция скорости тела в этот момент есть

$$v_{1,x} = v_{1,y} \operatorname{ctg} \alpha = \frac{g(t_2 - t_1)}{2} \sqrt{3} = v_{0,x}$$
 (3)

А поскольку горизонтальная составляющая скорости не меняется, то в процессе всего движения она будет (3). Отсюда и формулы (2) находим дальность полета S

$$S = v_{0,x} t_{nonh} = \frac{g(t_2 - t_1)}{2} \sqrt{3} (t_2 + t_1) = \frac{\sqrt{3}}{2} g(t_2^2 - t_1^2)$$

Максимальную высоту подъема h можно найти, зная вертикальную проекцию начальной скорости


$$h = \frac{v_{0,y}^2}{2g} = \frac{g(t_2 + t_1)^2}{8}$$

Критерии оценивания решения задачи (максимальная оценка за задачу – 2 балла)

- 1. Правильно найдено полное время полета тела и время подъема на максимальную высоту 0,5 балла
- 2. Правильно найдена вертикальная проекция начальной скорости тела 0,5 балла
- 3. Правильно найдена горизонтальная проекция вектора начальной скорости тела 0,5 балла
- 4. Правильный ответ 0,5 балла

Оценка за задачу является суммой оценок по вышеперечисленным критериям

2. Поскольку сопротивлением проводов можно пренебречь, то данная в условии задачи цепь эквивалентна цепи, показанной на рисунке.

Поэтому ток, текущий во внешней цепи, на левой паре сопротивлений

делится в пропорции 4:2 (ток, текущий через сопротивление 2R, к току, текущему через сопротивление 4R), а на правой паре сопротивлений в пропорции 1:5 (ток, текущий через сопротивление 5R, к току, текущему через сопротивление R).

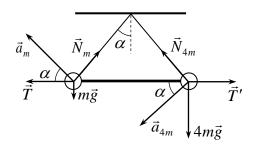
Поэтому через сопротивление 2R течет ток $I_{2R} = \frac{2}{3}I$, а через сопротивление 5R течет ток

 $I_{5R} = \frac{1}{6}I$. Поэтому правило токов (равенство суммы втекающих и вытекающих токов) в узле А дает

$$I_{2R} + I_{BA} = I_{5R}$$
 \Rightarrow $\frac{2}{3}I + I_{BA} = \frac{1}{6}I$

где $I_{{\scriptscriptstyle BA}}$ - ток, текущий по перемычке AB от B к A. Отсюда находим

$$I_{BA} = -\frac{1}{2}I = -3 \text{ A}$$


Знак минус показывает, что ток течет от А к В.

Критерии оценивания решения задачи (максимальная оценка за задачу – 2 балла)

- 1. Правильная идея решения использование правил токов в вершинах А и В 0,5 балла
- 2. Правильно найдены токи через все резисторы 0,5 балла
- 3. Правильный ответ для величины тока через перемычку 0,5 балла
- 4. Правильное направление тока через перемычку 0,5 балла

Оценка за задачу является суммой оценок по вышеперечисленным критериям

3. Поскольку в процессе движения тел нити останутся натянутыми, тела будут двигаться по окружностям с центром в точке крепления нитей. Но в начальный момент их скорость равна нулю, поэтому ускорения тел не будут иметь центростремительной составляющей, а будут направленными перпендикулярно нитям (см. рисунок). Кроме того, поскольку

проекции ускорений тел на направление стержня одинаковы (стержень нерастяжим), то ускорения тел равны по величине. На тела действуют: силы натяжения стержня \vec{T} и \vec{T}' , которые могут быть направлены только вдоль стержня, поскольку он не имеет массы, \vec{N}_m и \vec{N}_{4m} - силы натяжения нитей, направленные вдоль нитей, и силы тяжести $m\vec{g}$ и $4m\vec{g}$ (см. рисунок). Поэтому второй закон Ньютона для тел дает

$$m\vec{a}_{m} = m\vec{g} + \vec{T} + \vec{N}_{m}$$

$$4m\vec{a}_{4m} = 4m\vec{g} + \vec{T}' + \vec{N}_{4m}$$

Проецируя эти уравнения на оси, перпендикулярные нитям, и учитывая, что именно так направлены векторы ускорений тел, получим

$$ma = T\cos\alpha - mg\sin\alpha$$
$$4ma = 4mg\sin\alpha - T\cos\alpha$$

Складывая эти уравнения и учитывая, что $\sin \alpha = L/2l$ (см. рисунок), получим

$$a = \frac{3}{10} \frac{gL}{l}$$

Критерии оценивания решения задачи (максимальная оценка за задачу – 2 балла)

- 1. Правильно найдены направления ускорений тел в начальный момент (перпендикулярно нитям) 0,5 балла
- 2. Доказательство одинаковости ускорений тел 0,5 балла
- 3. Правильные уравнения второго закона Ньютона для обоих тел в проекциях на оси, перпендикулярные нитям -0.5 балла
- 4. Правильный ответ для ускорения тел 0,5 балла

Оценка за задачу является суммой оценок по вышеперечисленным критериям

4. Поскольку до температуры $6T_0/5$ поршень остается на месте до этой температуры с газом происходит изохорический процесс. При этой температуре давление газа становится равным $6p_0/5$, и разность сил, действующих на поршень со стороны газа и внешнего атмосферного воздуха превысит максимальную силу трения между поршнем и стенками (которая направлена вниз). Следовательно,

$$F_{mp,\text{max}} = \frac{1}{5} p_0 S$$

Поскольку газ нагревают медленно, его давление в любой момент времени равно сумме внешнего давления и избыточного давления, созданного силой трения. А поскольку сила трения не зависит от температуры, процесс, происходящий с газом — изобарический при давлении $6p_0/5$. Объем газа при температуре $2T_0$ можно найти по закону Гей-Люссака

$$\frac{V_0}{6T_0/5} = \frac{V_1}{2T_0}$$

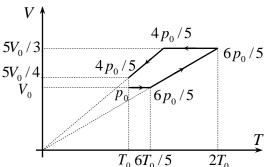
где V_1 - объем газа при температуре $2T_0$. Отсюда находим

$$V_1 = \frac{5}{3}V_0$$

После того как нагревание прекратили, поршень остановился, а газ начал охлаждаться. Но поршень не начнет двигаться вниз до того момента, как разность сил, действующих на него со стороны внешнего воздуха и газа не превысит максимальную силу трения (но направленную вверх). Поэтому с газом будет происходить изохорическое охлаждение при объеме V_1 до давления

$$p_1 = p_0 - \frac{1}{5} p_0 = \frac{4}{5} p_0$$

Температуру газа в этот момент можно найти по закону Шарля


$$\frac{6p_0/5}{2T_0} = \frac{p_1}{T_1} = \frac{4p_0/5}{T_1} \implies T_1 = \frac{4}{3}T_0$$

После достижения этой температуры давление газа станет равно p_1 , и с газом будет проходить изобарическое охлаждение при этом давлении до

температуры T_0 . Объем газа V_2 в конечном состоянии можно найти по закону Гей-Люссака

$$\frac{V_1}{T_1} = \frac{V_2}{T_0} \qquad \Longrightarrow \qquad V_2 = \frac{5}{4}V_0$$

График зависимости объема газа от его температуры с указанием характерных параметров газа при изменении характера процесса, приведен на рисунке.

Критерии оценивания решения задачи (максимальная оценка за задачу – 2 балла)

- 1. Правильное определение моментов начала движения поршня разность сил, действующих на поршень со стороны внешнего и внутреннего воздуха равно максимальной силе трения между поршнем и стенками сосуда 0,5 балла
- 2. Правильно найдена максимальная сила трения 0,5 балла
- 3. Правильное определение характера всех процессов, происходящих с газом в сосуде 0,5 балла
- 4. Правильный график зависимости объема газа от его температуры с нанесением всех характерных точек -0.5 балла

Оценка за задачу является суммой оценок по вышеперечисленным критериям

5. Пусть сила натяжения нити, охватывающей все блоки, равна T. Тогда (поскольку блоки невесомы) на нижние тела действует сила натяжения 2T. Поэтому второй закон Ньютона для нижних тел дает

$$ma_{x} = 2T - mg$$

где a_x - проекция вектора ускорения этих тел на ось, направленную вертикально вверх (естественно, ускорения этих тел одинаковы). Второй закон Ньютона для левого и правого тел (также в проекциях на ось, направленную вертикально вверх) дают

$$ma_{x,nee} = T - mg$$

$$\frac{m}{2}a_{x,npae} = T - \frac{m}{2}g$$

Поскольку первое и последнее уравнение совпадают (они отличаются только множителем 2), ускорения нижних тел и правого тела совпадают (и по величине и по направлению). А ускорение левого — отличается. Найдем связь этих ускорений. Если нижние тела и правое тело движутся вверх, то левое тело движется вниз. И наоборот. Поэтому знаки величин a_x и $a_{x,neg}$ - противоположны. Если нижние и правый грузы поднялись на величину Δx , то освободилось $9\Delta x$ нити левее самого левого

блока, и, следовательно, левое тело опустилось на $9\Delta x$. Следовательно, левое тело в любой момент времени имеет в 9 раз большую скорость, чем нижние тела и правое тела, и, следовательно, его ускорение в 9 раз больше по величине ускорений нижних и правого тела. С учетом этих связей уравнения дают

$$ma_x = 2T - mg$$
$$-m9a_x = T - mg$$

Решая эту систему, находим ускорения нижних и правого тела

$$a_x = \frac{1}{19}g$$

а затем из условия связи ускорений – ускорение левого тела

$$a_{x,nee} = -\frac{9}{19}g$$

Поскольку проекции ускорений нижних и правого тел на ось, направленную вертикально вверх, оказались положительны, нижнее и правое тела имеют ускорения, направленные вертикально вверх и равные по величине

$$a_{\text{\tiny HUJKH}} = a_{npas} = \frac{1}{19} g$$

Ускорение левого тела направлено вертикально вниз и равно

$$a_{nee} = \frac{9}{19} g$$

Критерии оценивания решения задачи (максимальная оценка за задачу – 2 балла)

- 1. Правильные уравнения второго закона Ньютона для всех тел 0,5 балла
- 2. Доказательство, что ускорения правого и нижних тел одинаковы по величине и направлению 0,5 балла
- 3. Правильная кинематическая связь ускорения левого тела и остальных тел 0,5 балла
- 4. Правильные ответы для ускорений 0,5 балла

Оценка за задачу является суммой оценок по вышеперечисленным критериям

Оценка работы

Оценка работы складывается из оценки задач. Максимальная оценка — 10 баллов. Допустимыми являются все целые или «полуцелые» оценки от 0 до 10.