Решения Заключительный тур олимпиады Росатом, математика, 11 класс, комплект 2 2017-2018 учебный год

- **1.** Для каждого допустимого a найти наименьшее решение уравнения $2\log_a^2 x + \log_a x^3 3 = \log_x a^2$.
- **2.** Найти наименьшую длину отрезка числовой оси, содержащего три различных решения уравнения $\cos 2x \sin 2x ctg \, 2x \cdot \sin x + \sin x = 0$.
- **3.** Решить уравнение $\{2\sin x\} + [\cos 2x] = 0$, где [a] целая часть числа a наибольшее целое число не превосходящее a, $\{a\}$ дробная часть числа a : $\{a\} = a [a]$.
- **4.** Робот может совершать равные по длине шаги по дорожке вперед и назад, при этом выбор направления движения каждого шага является случайным и равновозможным. Робот сделал 10 шагов и остановился. Найти вероятность того, что он окажется на расстоянии более двух шагов от начала движения.
- **5.** При каких *a* уравнение $4\sin^2 x + 4a\cos x 5a = 0$ имеет решения на отрезке $\left[\frac{\pi}{3}; \frac{\pi}{2}\right]$?
- **6.** Плоскости P и Q, параллельные основанию правильной четырехугольной пирамиды SABCD, пересекают ребро SA пирамиды в точках M и N. Длины отрезков SM, SN и SA являются тремя последовательными членами геометрической прогрессии с знаменателем q=3. Найти двугранный угол при основании пирамиды, если известно, что в усеченную пирамиду с плоскостями оснований P и Q можно вписать шар.

Задача 1 Ответ:
$$x_{\min}(a) = \begin{cases} a, a \in (0;1) \\ \frac{1}{a^2}, a \in (1;+\infty) \end{cases}$$

Решение

Преобразование: $a > 0, a \ne 1, x > 0$

$$2\log_a^2 x + 3\log_a x - 3 = \frac{2}{\log_a x} \rightarrow 2\log_a^3 x + 3\log_a^2 x - 3\log_a x - 2 = 0$$

Замена $t = \log_a x$ приводит к кубическому уравнению $2t^3 + 3t^2 - 3t - 2 = 0$, имеющему три корня

$$t_1=1,\,t_2=-2,\,t_3=-rac{1}{2}$$
 . Им соответствуют три решения: $x_1=a,\,x_2=rac{1}{a^2},\,x_3=rac{1}{\sqrt{a}}$

На интервале $a\in (0;1)$ справедливо неравенства $a<\frac{1}{\sqrt{a}}<\frac{1}{a^2}\to x_{\min}(a)=a$. Аналогично, на полуоси $a\in (1;+\infty)$

выполнено неравенство
$$\frac{1}{a^2} < \frac{1}{\sqrt{a}} < a \rightarrow x_{\min}(a) = \frac{1}{a^2}$$

Задача 2 Ответ:
$$L = \frac{\pi}{2}$$

Решение

Преобразование:

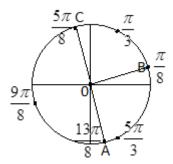
$$\sin 2x \cdot (ctg 2x - 1) - \sin x \cdot (ctg 2x - 1) = 0 \longrightarrow (ctg 2x - 1)(\sin 2x - \sin x) = 0 \longrightarrow$$

$$\sin x \cdot (2\cos x - 1) \cdot (ctg 2x - 1) = 0$$

Множество решений уравнения:

$$\sin x \neq 0$$
 (ОД3), $\begin{bmatrix} ctg \, 2x = 1 \\ \cos x = \frac{1}{2} \end{bmatrix} \xrightarrow{} \begin{bmatrix} x = \frac{\pi}{8} + \frac{\pi}{2}k, k \in \mathbb{Z} \\ x = \pm \frac{\pi}{3} + 2\pi m, m \in \mathbb{Z} \end{bmatrix}$

Для удобства изобразим это множество на тригонометрическом круге



Наименьшая дуга секторов, содержащих три решения, соответствует сектору AOB или BOC . Каждый из этих секторов имеет угол $\frac{\pi}{2}$ и длину дуги окружности, на которую он опирается, равную так же $\frac{\pi}{2}$.

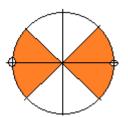
Задача 3 Ответ:
$$x = \pm \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$$

Решение

Дробная часть числа a может быть целым числом только, если $\{a\}=0$. Тогда

$$\begin{cases} \{2\sin x\} = 0 \\ [\cos 2x] = 0 \end{cases} \to \begin{cases} \sin x = \{0, \pm 1/2, \pm 1\} \\ 0 \le \cos 2x < 1 \end{cases}$$

Решение неравенства изображено на рис.



Решением системы является $\sin x = \pm \frac{1}{2} \rightarrow x = \pm \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$

Задача 4 Ответ:
$$P(A) = 1 - \frac{C_{10}^4 + C_{10}^5 + C_{10}^6}{2^{10}} = \frac{11}{32}$$

Решение

Если шагов всего один, то робот может остановиться в двух положениях, условно изображенных на рис

Здесь 0 — начало движения, -1 — шаг назад, 1 — шаг вперед. Вероятность попасть в положения -1 и 1 одинаковая и равна $\frac{1}{2}$.

Если шагов два, то существует три возможных положения робота в конце движения, условно обозначенных на рис

В положение -2 можно попасть из положения -1 после первого шага, совершив шаг назад. Таким образом, вероятность попадания в положение -2 за два шага равна $1/4 = C_2^0 \cdot \frac{1}{2^2}$. В положение 0 можно попасть из положений -1 и 1 после первого шага, совершив шаги вперед и назад соответственно. Тогда вероятность попадания в положение 0 после двух шагов равна $2 \cdot \frac{1}{4} = C_2^1 \cdot \frac{1}{2^2}$. В положение 2 после второго шага возможно попасть только из положения 1, делая один шаг вперед. Вероятность попадания в 2 за два шага равна $1/4 = C_2^2 \cdot \frac{1}{2^2}$.

$$\begin{array}{cccc} C_2^0 \cdot \frac{1}{2^2} & & C_2^1 \cdot \frac{1}{2^2} & & C_2^2 \cdot \frac{1}{2^2} \\ -1 & & 0 & & 1 \end{array}$$

Далее образование коэффициентов при степенях 1/2 определяется треугольником Паскаля.

Предположим, что робот сделал до остановки k шагов. Тогда существует k+1 возможных положений, в которых он может остановиться. Крайние из них находятся на расстоянии k шагов от начального положения движения. Расстояние между соседними положениями равно двум шагам.

На рис. изображены эти положения для четных и нечетных k.

$$-2m$$
 \cdots -2 0 2 \cdots $2m$ $-2m-1$ \cdots -3 -1 1 3 \cdots $2m+1$ $k=2m$ $k=2m+1$

Для k=2m вероятность остановки в положении 0 равна $C_k^m \cdot \frac{1}{2^k}$, в положении ± 2 (на расстоянии 2 шага от начала движения) эта вероятность равна $C_k^{m-1} \cdot \frac{1}{2^k}$, в положение ± 4 (на расстоянии 4 шага от начального положения) — $C_k^{m-2} \cdot \frac{1}{2^k}$ и т.д. в положении $\pm 2m$ эта вероятность равна $C_k^0 \cdot \frac{1}{2^k}$. В варианте 1 m=5. Вероятность остановится в по-

ложении, отстоящем от начального не более двух шагов, равна $P(\overline{A}) = \frac{1}{2^{10}} \left(C_{10}^4 + C_{10}^5 + C_{10}^6 \right) = \frac{21}{32}$, а вероятность противоположного события $P(A) = \frac{11}{32}$.

Для k=2m+1 вероятность остановки в положении ± 1 равна $C_k^m \cdot \frac{1}{2^k}$, в положении ± 3 (на расстоянии 3 шага от начала движения) $-C_k^{m-1} \cdot \frac{1}{2^k}$, и т.д. остановка в положении $\pm (2m+1)$ происходит с вероятностью $C_k^0 \cdot \frac{1}{2^k}$.

Задача 5 Ответ: $a \in [0,8;1]$

Решение.

Искомые a принадлежат области значений функции $a = \frac{4\sin^2 x}{5 - 4\cos x} = \frac{4(1 - \cos^2 x)}{5 - 4\cos x}$ на отрезке $\left[\frac{\pi}{3}; \frac{\pi}{2}\right]$. Замена

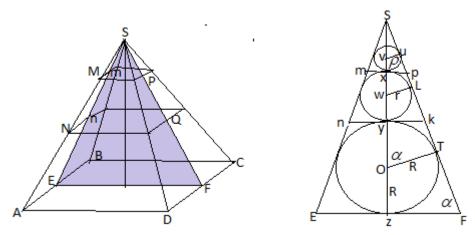
 $t = \cos x$ приводит к задаче нахождения области значений функции $a = \frac{4(1-t^2)}{5-4t}$ на отрезке $\left[0; \frac{1}{2}\right]$.

Исследование функции:

Производная $a' = 8\frac{(2t-1)(t-2)}{\left(5-4t\right)^2}$ неотрицательная на отрезке $\left[0;\frac{1}{2}\right]$, поэтому $a_{\min} = a(0) = \frac{4}{5}$, $a_{\max} = a(0,5) = 1$

Задача 6 Ответ: $\alpha = 60^{\circ}$

Решение. В пирамиде проведено осевое сечение, перпендикулярное стороне основания.



По условию $Sn = Sm \cdot q$, $SE = Sn \cdot q = Sm \cdot q^2$. Тогда VSmp : VSnk с коэффициентом подобия q и VSmp : VSEF с коэффициентом подобия q^2 .

По условию, в усеченную пирамиду можно вписать шар, а значит, в трапецию mnpk можно вписать окружность. Так как образом при преобразовании подобия с центром в точке S и коэффициентом подобия q отрезка mp является отрезок nk, а отрезок nk переходит в отрезок EF, то окружность радиуса r с центром в точке w переходит в окружность радиуса $R = r \cdot q$ с центром в точке O, вписанную в трапецию EnkF. Аналогично, окружность с центром в точке w является образом окружности радиуса p, вписанной в треугольник Smp.

Из подобия треугольников OTS и FzS имеем $(H-R)\cos\alpha=R\to R=\frac{H\cos\alpha}{1+\cos\alpha}$, где H=Sz .

Если Sy = h, то

$$h + 2R = H = hq \rightarrow h(q - 1) = 2R = \frac{2H\cos\alpha}{1 + \cos\alpha} = \frac{2hq\cos\alpha}{1 + \cos\alpha} \rightarrow q\left(1 - \frac{2\cos\alpha}{1 + \cos\alpha}\right) = 1 \rightarrow q = \frac{1 + \cos\alpha}{1 - \cos\alpha}$$

По условию,
$$q=3 \rightarrow \frac{1+\cos\alpha}{1-\cos\alpha}=3 \rightarrow \cos\alpha=\frac{1}{2} \rightarrow \alpha=60^{\circ}$$

Вариант 2

Задача 1 Ответ:
$$x_{\max}(a) = \begin{cases} \frac{1}{a}, a \in (0;1) \\ a^2, a \in (1;+\infty) \end{cases}$$

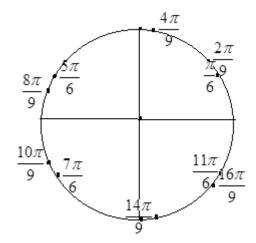
Задача 2 Ответ:
$$L = \frac{5\pi}{18}$$

Решение

Преобразование:

$$2\cos 3x \cdot (3\sin^2 x - \cos^2 x) + 4\sin^2 x - 1 = 0 \rightarrow 2\cos 3x \cdot (4\sin^2 x - 1) + 4\sin^2 x - 1 = 0 \rightarrow (4\sin^2 x - 1)(2\cos 3x + 1) = 0$$

Решения
$$x = \pm \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}$$
 $x = \pm \frac{2\pi}{9} + \frac{2\pi m}{3}, \ m \in \mathbb{Z}$



Задача 3 Ответ:
$$x=(-1)^k\frac{\pi}{6}+\pi k, x=(-1)^k\frac{\pi}{3}+\pi k, x=\pi k, x=(-1)^k\frac{\pi}{4}+\pi k, k\in \mathbb{Z}$$

Задача 4 Ответ:
$$P(A) = \frac{C_9^3 + C_9^4 + C_9^5 + C_9^6}{2^9} = \frac{105}{128}$$

Задача 5 Ответ:
$$a \in \left[-1; -\frac{3}{7}\right]$$

Вариант 3

Задача 1 Ответ:
$$x_{\min}(a) = \begin{cases} a^2, a \in (0;1) \\ \frac{1}{\sqrt{a}}, a \in (1;+\infty) \end{cases}$$

Задача 2 Ответ:
$$L = \frac{\pi}{3}$$

Решение

Преобразование:

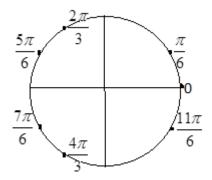
$$4\sin^{2} 2x(\cos 3x + 3\cos x) - 3(\cos 3x + 3\cos x) - (3\cos x + 1)(4\sin^{2} 2x - 3) = 0 \rightarrow$$

$$(4\sin^{2} 2x - 3)(\cos 3x + 3\cos x) - (3\cos x + 1)(4\sin^{2} 2x - 3) = 0 \rightarrow$$

$$(4\sin^{2} 2x - 3)(\cos 3x - 1) = 0$$

Решения
$$x = \frac{2\pi k}{3}, k \in \mathbb{Z}$$

$$x = \pm \frac{\pi}{6} + \pi m, m \in \mathbb{Z}$$



Задача 3 Ответ:
$$x = \frac{\pi k}{2}$$
 , $x = -\frac{\pi}{3} + \pi k$, $k \in Z$

Задача 4 Ответ:
$$P(A) = \frac{C_8^4}{2^8} = \frac{35}{128}$$

Задача 5 Ответ:
$$a \in \left[\frac{1}{6}; \frac{1}{2}\right]$$

Задача 6 Ответ:
$$V = \frac{a^3 \sqrt{5}}{12}$$

Вариант 4

Задача 1 Ответ:
$$x_{\min}(a) = \begin{cases} \frac{1}{a}, a \in (0;1) \\ a, a \in (1;+\infty) \end{cases}$$

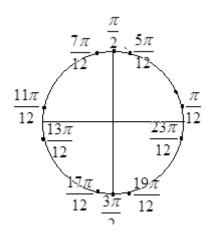
Задача 2 Ответ:
$$L = \frac{2\pi}{9}$$

Решение

Преобразование:

$$\cos 2x (4\sin^2 3x - 1) - 2\cos 6x + 1 = 0 \to \cos 2x (4\sin^2 3x - 1) - 2(1 - 2\sin^2 x) + 1 = 0 \to \cos 2x (4\sin^2 3x - 1) + (4\sin^2 3x - 1) = 0 \to (4\sin^2 3x - 1)(\cos 2x + 1) = 0$$

Решения
$$x = \pm \frac{\pi}{12} + \frac{\pi k}{3}, k \in \mathbb{Z}$$
$$x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$



Задача 3 Ответ:
$$x=\pm\frac{11\pi}{12}+2\pi k, x=\pm\frac{7\pi}{12}+2\pi k, x=\pm\frac{\pi}{4}+2\pi k, x=\frac{\pi}{2}+\pi k, k\in Z$$

Задача 4 Ответ: Ответ:
$$P(A) = 1 - \frac{2C_7^3 + 2C_7^2}{2^7} = \frac{1}{8}$$

Задача 5 Ответ:
$$a \in \left[\frac{1}{6}; \frac{2}{3}\right]$$

Задача 6 Ответ:
$$S_{\delta o \kappa} = \frac{7a^2}{5}$$

Решения Заключительный тур олимпиады Росатом, математика, 11 класс, комплект 3 2017-2018 учебный год

- **1.** Члены последовательности $\left\{a_n\right\}_{n=1}^{\infty}$ удовлетворяют соотношению $a_{n+1}=2a_n+3,\ a_1=a$ для любых n и целом a . При каких a число 637 является членом последовательности?
- **2.** Найти наибольшее значение функции $y = 24\pi x/(9\pi^2 + 16x^2)$ на множестве решений уравнения $\sin x \cdot \cos 2x 2\cos^3 x + \cos 2x \sin x + 2\cos x = 1$.
- 3. Найти натуральное число, делящееся на 225 и имеющее 15 различных делителей.
- **4.** На окружности совершенно случайно взяты три точки A, B и C . Найти вероятность того, что треугольник ABC тупоугольный.
- **5.** При каких a система $\begin{cases} \left(x^2 + (y-7)^2 9\right)\left((x-4)^2 + (y-3)^2 1\right) = 0 \\ ax y 4a 2 = 0 \end{cases}$ имеет четыре решения?
- **6.** Плоскость P пересекает боковые ребра SA, SB, SC треугольной пирамиды SABC в точках M, N, K соответственно и образует угол 45° с боковой гранью SBC. Найти объем пирамиды SABC, если произведение ее ребер $SA \cdot SB \cdot SC = 5\sqrt{15}$, а пирамида SMNK правильная.

Задача 1 Ответ: $a = 5 \cdot 2^{8-n} - 3$ для n = 1, 2, ... 8

Решение

Найдем общий член последовательности:

$$a_2 = 2 \cdot a + 3 \rightarrow a_3 = 2(2 \cdot a + 3) + 3 = 2^2 \cdot a + 2 \cdot 3 + 3 \rightarrow a_4 = 2(2^2 \cdot a + 2 \cdot 3 + 3) + 3 = 2^3 \cdot a + 3(2^2 + 1)$$

$$a_n = 2^{n-1} \cdot a + 3(2^{n-2} + 2^{n-1} + \dots + 1) = 2^{n-1} \cdot a + 3(2^{n-1} - 1) = (a+3) \cdot 2^{n-1} - 3$$

Нужно найти целые a и n, при которых $a_n = 637$:

$$(a+3)\cdot 2^{n-1} - 3 = 637 \rightarrow (a+3)\cdot 2^{n-1} = 640 = 5\cdot 2^7 \rightarrow a+3 = 5\cdot 2^{8-n}$$

Число a+3 может быть целым для n=1,2,...8, т.е. существует восемь таких значений $a=5\cdot 2^{8-n}-3$ для n=1,2,...8.

Задача 2 Ответ:
$$y_{\text{max}} = \frac{24}{25} = 0,96$$

Решение

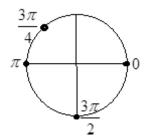
Преобразование:

$$-\sin x \cdot (1 - \cos 2x) + \cos x \cdot (2 - 2\cos^2 x) - (1 - \cos 2x) = 0$$

$$-\sin x \cdot (1 - \cos 2x) + \cos x \cdot (1 - \cos 2x) - (1 - \cos 2x) = 0 \\ \to (1 - \cos 2x)(\cos x - \sin x - 1) = 0$$

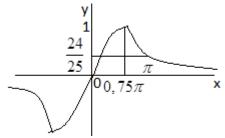
Множество решений:

$$\begin{bmatrix} \cos 2x = 1 \\ \cos x - \sin x = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) = 1 \end{bmatrix} \xrightarrow{} \begin{bmatrix} x = \pi k \\ \cos\left(x + \frac{\pi}{4}\right) = \cos\frac{\pi}{4} \end{bmatrix} \xrightarrow{} \begin{cases} x = \pi k \\ x = 2\pi m \\ x = -\frac{\pi}{2} + 2\pi n \end{cases}$$



Наибольшее значение функции

$$y = 24\pi x/(9\pi^2 + 16x^2) \rightarrow y' = 24\pi \cdot \frac{9\pi^2 - 16x^2}{(9\pi^2 + 16x^2)^2} = 0 \rightarrow x_{\text{max}} = \frac{3\pi}{4}, y_{\text{max}} = 1, x_{\text{min}} = -\frac{3\pi}{4}, y_{\text{min}} = -1$$



Ближайшими к $x_{\max} = \frac{3\pi}{4}$ решениями уравнения являются x = 0 и $x = \pi$, причем на них достигается наибольшее зна-

чение функции
$$y(x)$$
, $y(0) = 0$, $y(\pi) = \frac{24}{25}$

Задача 3 Ответ: 5625, 2025

Решение

Заметим, что число a с разложением на простые делители вида $a=p_1^{s_1}\cdot p_2^{s_2}\cdot ...\cdot p_k^{s_k}$ имеет $(s_1+1)(s_2+1)\cdot ...\cdot (s_k+1)$ различных делителей. Если a делится на 225, то $a=3^{s_1}\cdot 5^{s_2}\cdot b$, причем $s_1\geq 2$ и $s_2\geq 2$. Если b>1, то оно имеет по крайней мере один простой делитель $p\colon p\neq 3, p\neq 5$. Тогда общее число различных делителей числа a не меньше

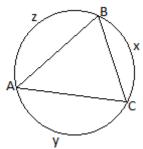
 $(s_1+1)(s_2+1)\cdot 2 \geq 3\cdot 3\cdot 2 = 18 > 15$, что противоречит условию. Отсюда следует, что b=1 и общее число делителей числа a равно $(s_1+1)(s_2+1)=15$. Последнее возможно в двух случаях:

1.
$$s_1 = 2$$
, $s_2 = 4 \rightarrow a_1 = 3^2 \cdot 5^4 = 5625$ 2. $s_1 = 4$, $s_2 = 2 \rightarrow a_2 = 3^4 \cdot 5^2 = 2025$

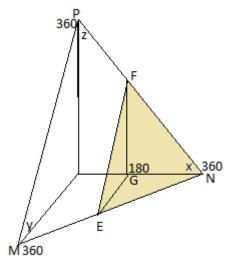
Задача 4 Ответ: $P(A) = \frac{3}{4}$

Решение

Обозначения: x, y, z — величины (в градусах) дуг окружности, на которые опираются углы при вершинах A, B, C треугольника.

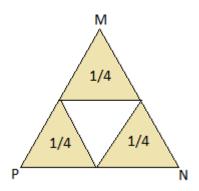


По условию x + y + z = 360, x > 0, y > 0, z > 0. Множество допустимых троек являются координатами точек треугольника MNP в пространстве:



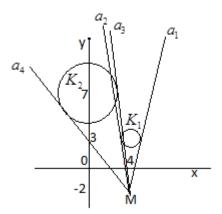
Если треугольник тупоугольный, например x>180, то допустимые точки с координатами $\left(x;y;z\right)$ принадлежат треугольнику EFN, площадь которого равна $\frac{1}{4}S_{NMP}$. Аналогично, для допустимых точек при y>180 и z>180. Поскольку вероятность события пропорциональна площади соответствующей ему области в треугольнике MNP, имеем $P(A/x>180)=\frac{S_{EFN}}{S_{MNP}}=\frac{1}{4}$.

Ту же вероятность имеют события $P(A/y > 180) = \frac{1}{4}$, $P(A/z > 180) = \frac{1}{4}$. В итоге $P(A) = \frac{3}{4}$.



Задача 5 Ответ: $a \in \left(\frac{-36 - 6\sqrt{22}}{7}; -2\sqrt{6}\right)$

Решение



Обозначения:

 K_1 — окружность с уравнением $(x-4)^2+(y-3)^2-1=0$; M(4;-2) — точка, через которую проходят прямые ax-y-4a-2=0 при любых a ; a_1,a_2 — значения параметра a , соответствующие касательным к окружности K_1 , проведенным из точки M ; a_3,a_4 — значения параметра a , соответствующие касательным к окружности K_2 , проведенным из точки M ;

Вычисление a_1, a_2 :

$$\begin{cases} (x-4)^2 + (y-3)^2 - 1 = 0 \\ ax - y - 4a - 2 = 0 \to y - 3 = a(x-4) - 5 \end{cases} \to (x-4)^2 + (a(x-4)-5)^2 - 1 = 0 \to (1+a^2)(x-4)^2 - 10a(x-4) + 24 = 0$$

Условие касания $D/4 = 0 \rightarrow 25a^2 - 24(1+a^2) = 0 \rightarrow a^2 = 24 \rightarrow a_1 = 2\sqrt{6}, a_2 = -2\sqrt{6}$

Вычисление a_3, a_4 :

$$\begin{cases} x^2 + (y-7)^2 - 9 = 0 \\ ax - y - 4a - 2 = 0 \to y - 7 = a(x-4) - 9 \end{cases} \to x^2 + \left(a(x-4) - 9\right)^2 - 9 = 0 \to x^2 + (ax - (4a+9))^2 - 9 = 0 \\ \to \left(1 + a^2\right)x^2 - 2a(4a+9)x + (4a+9)^2 - 9 = 0 \end{cases}$$

$$D/4 = 0 \to a^2(4a+9)^2 - (1+a^2)((4a+9)^2 - 9) = 0 \to -(4a+9)^2 + 9(1+a^2) = 0 \to 0$$

$$D/4 = 0 \to a^2(4a+9)^2 - (1+a^2)((4a+9)^2 - 9) = 0 \to -(4a+9)^2 + 9(1+a^2) = 0$$
Bue касания

вие касания $\rightarrow 7a^2 + 72a + 72 = 0 \rightarrow a_3 = \frac{-36 - 6\sqrt{22}}{7}$, $a_4 = \frac{-36 + 6\sqrt{22}}{7}$

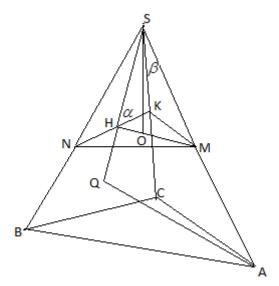
Заметим, что $a_3 < a_2$ и для всех $a \in (a_3; a_2)$ прямая ax - y - 4a - 2 = 0 пересекает окружности K_1 и K_2 , а система имеет четыре решения.

Задача 6 Ответ:
$$V_{SABC} = \frac{p\sqrt{3}\cos^2\alpha\sin\alpha}{\left(1+3\cos^2\alpha\right)^{3/2}} = \frac{p\sqrt{3}tg\alpha}{\left(tg^2\alpha+4\right)^{3/2}}$$
. В варианте 1 $\alpha=45^{\circ}, p=5\sqrt{15}, V=3$

Плоскость P пересекает боковые ребра SA, SB, SC треугольной пирамиды SABC в точках M, N, K соответственно и образует угол α с боковой гранью SBC. Найти объем пирамиды SABC, если произведение ее ребер $SA \cdot SB \cdot SC = p$, а пирамида SMNK правильная.

Otbet:
$$V_{SABC} = \frac{p\sqrt{3}\cos^2\alpha\sin\alpha}{\left(1+3\cos^2\alpha\right)^{3/2}} = \frac{p\sqrt{3}tg\alpha}{\left(tg^2\alpha+4\right)^{3/2}}$$

Решение.



Обозначения: H — середина NK; $RMHS = \alpha$ — заданный угол; $RMSK = \beta$ — угол при вершине правильной пирамиды; $RMSH = \gamma$ — угол наклона ребра AS к плоскости боковой грани SBC;

a — сторона правильного треугольника MNK ; l — боковое ребро правильной пирамиды SMNK

В этих обозначениях
$$V_{\mathit{SABC}} = \frac{1}{6}\mathit{SA} \cdot \mathit{SB} \cdot \mathit{SC} \cdot \sin \beta \cdot \sin \gamma = \frac{p}{6} \sin \beta \cdot \sin \gamma$$
 .

Выразим $\sin \beta$, $\sin \gamma$ через тригонометрические функции угла α .

Из VSNK $a=2l\sin\beta/2$. Площадь боковой поверхности правильной пирамиды и площадь ее основания связаны соотношением:

$$S_{\text{\tiny DOK}} \cdot \cos \alpha = S_{\text{\tiny OCH}} \rightarrow \frac{3}{2} l^2 \sin \beta = \frac{\sqrt{3} a^2}{4 \cos \alpha} \rightarrow \frac{3}{2} \cdot \frac{a^2}{4 \sin^2 \beta / 2} \sin \beta \cos \alpha = \frac{a^2 \sqrt{3}}{4} \rightarrow tg \beta / 2 = \sqrt{3} \cos \alpha$$

Тогда
$$\sin \beta = \frac{2tg\beta/2}{1+tg^2\beta/2} = \frac{2\sqrt{3}\cos\alpha}{1+3\cos^2\alpha}$$

Из VSHM по теореме синусов $\sin \gamma = \frac{\sqrt{3} \cdot a \cdot \sin \alpha}{2l}$.

Из VSOM
$$l^2 = \left(\frac{a\sqrt{3}}{6}tg\alpha\right)^2 + \left(\frac{a\sqrt{3}}{3}\right)^2 = \frac{a^2}{12}(tg^2\alpha + 4) \to l = \frac{a\sqrt{1 + 3\cos^2\alpha}}{2\sqrt{3}\cos\alpha}$$

Тогда
$$\sin \gamma = \frac{3 \sin \alpha \cos \alpha}{\sqrt{1 + 3 \cos^2 \alpha}}$$
 . Объединяя формулы, получим объем $V_{\mathit{SABC}} = \frac{p \sqrt{3} \cos^2 \alpha \sin \alpha}{\left(1 + 3 \cos^2 \alpha\right)^{3/2}} = \frac{p \sqrt{3} t g \alpha}{\left(t g^2 \alpha + 4\right)^{3/2}}$

Вариант 2

Задача 1 Ответ: a = 4379

Задача 2 Ответ:
$$y_{\min} = \frac{1}{17}$$

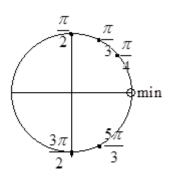
Решение

Преобразование:

$$\cos x \left[\sin x + (1 + 2\sqrt{2})\cos x - 2\sin x \cos x - (\sqrt{2} + 2\cos^2 x) \right] = 0 \rightarrow$$

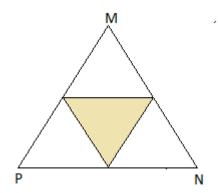
$$\cos x \left[\sin x (1 - 2\cos x) + \cos x (1 - 2\cos x) - \sqrt{2} (1 - 2\cos x) \right] = 0 \rightarrow$$

$$\cos x \cdot (1 - 2\cos x) \cdot (\sin x + \cos x - \sqrt{2}) = 0$$



Задача 3 Ответ: 5103

Задача 4 Ответ: $P(A) = \frac{1}{4}$



Задача 5 Ответ:
$$a = \frac{6\sqrt{2} - 4}{7}$$
, $a = \frac{8 - \sqrt{19}}{15}$

Задача 6
$$V_{SABC}=rac{p\sqrt{3}\cos^2{lpha}\sin{lpha}}{\left(1+3\cos^2{lpha}
ight)^{3/2}}=rac{p\sqrt{3}tglpha}{\left(tg^2lpha+4
ight)^{3/2}}$$
 . В варианте 2 $\,lpha=60^{\circ},\,p=14\sqrt{7},V=6$

Вариант 3

Задача 1 Ответ: a = 8014

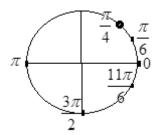
Задача 2 Ответ:
$$y_{\text{max}} = \frac{3}{26}$$

Решение

Преобразование:

$$\sin x \left[\sqrt{3} \sin x - \sqrt{3} \cos x - 2 \cos x + \sqrt{3} - 2 \sin x \cos x + 2 \cos^2 x \right] = 0 \rightarrow$$

$$\sin x \left[\sqrt{3} (\sin x - \cos x + 1) - 2\cos x (1 + \sin x - \cos x) \right] = \sin x \cdot (\sin x - \cos x + 1) \cdot \left(\sqrt{3} - 2\cos x \right) = 0$$

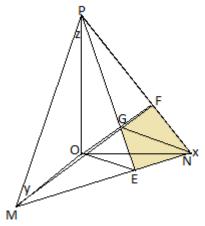


Задача 3 Ответ: 576

Задача 4 Ответ:
$$P(A) = \frac{1}{2}$$

Решение

Пусть, например x > 2y, x > 2z. На рис изображена область в треугольнике MNP соответствующая этим неравенствам



OE – прямая на плоскости xoy с уравнением x = 2y; NE: NM = 1:3

OF — прямая на плоскости xoz с уравнением x = 2z; NF : NP = 1:3

Прямые MF и PE на плоскости треугольника MNP пересекаются в точке G . Допустимые тройки

$$\left(x;y;z\right) \longleftrightarrow \begin{cases} x+y+z=360 \\ x>2y \qquad \text{являются координатами точек четырехугольника $NEGF$} \ . \\ x>2z,x>0,y>0,z>0 \end{cases}$$

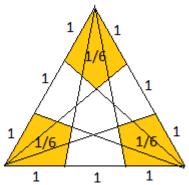


Точка G делит отрезок PE в отношении PG : GE = u : v и по теореме Менелая (треугольник NPE и секущая FM)

$$\frac{1}{2} \cdot \frac{u}{v} \cdot \frac{2}{3} = 1 \rightarrow u = 3v$$

Площадь треугольника NGE равна $S_{NGE} = \frac{1}{4} \, S_{NEP} = \frac{1}{12} \, S_{NMP} \longrightarrow S_{NEGF} = \frac{1}{6} \, S_{MNP} \longrightarrow P \left(A \, / \, x > 2y, x > 2z \right) = \frac{1}{6} \, .$

Аналогично, $P(A/y > 2x, y > 2z) = P(A/z > 2x, z > 2y) = \frac{1}{6}$. Тогда $P(A) = 3 \cdot \frac{1}{6} = \frac{1}{2}$.



Задача 5 Ответ:
$$a \in \left(-\infty; \frac{4-3\sqrt{14}}{4}\right) \cup \left(\frac{5}{12}; \frac{4+3\sqrt{14}}{4}\right)$$

Задача 6.
$$V_{\mathit{SABC}} = \frac{p\sqrt{3}\cos^2\alpha\sin\alpha}{\left(1+3\cos^2\alpha\right)^{3/2}} = \frac{p\sqrt{3}tg\alpha}{\left(tg^2\alpha+4\right)^{3/2}}$$
. В варианте 3. $\alpha=30^{\circ},\,p=13\sqrt{39},V=9$

Задача 1 Ответ: a = 4465

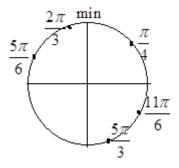
Задача 2 Ответ:
$$y_{\min} = \frac{19}{37}$$

Решение

Преобразование:

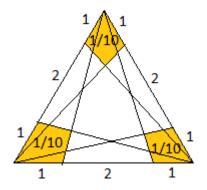
$$\sqrt{3}\left(\sin x + \cos x - \sqrt{2}\right) + 2\sin 2x\left(\sin x + \cos x - \sqrt{2}\right) = 0 \rightarrow$$

$$\left(\sin x + \cos x - \sqrt{2}\right)\left(2\sin 2x + \sqrt{3}\right) = 0$$



Задача 3 Ответ: 295245

Задача 4 Ответ:
$$P(A) = \frac{3}{10}$$



Задача 5 Ответ:
$$a = -\frac{4}{3}$$
, $a = \frac{5 + 2\sqrt{22}}{21}$

Задача 6.
$$V_{SABC} = \frac{p\sqrt{3}\cos^2\alpha\sin\alpha}{\left(1+3\cos^2\alpha\right)^{3/2}} = \frac{p\sqrt{3}tg\alpha}{\left(tg^2\alpha+4\right)^{3/2}}$$
. В варианте 4 $\alpha = arctg\sqrt{5}$, $p = 27\sqrt{15}$, $V = 15$

Решения

Заключительный тур олимпиады Росатом, математика, 11 класс, комплект 1 2017-2018 учебный год

- **1.** Найти x, при которых числа $\log_2(6\sin x)$, $\log_{2\cos x}(6\sin x)$ и $\log_{2\cos x} 4$ могут быть тремя последовательными членами геометрической прогрессии.
- **2.** Найти решения (x; y) системы $\begin{cases} \sin(2x + y) = -1 \\ \cos(x y) = 1 \end{cases}$ в прямоугольнике $-\pi \le x \le \pi/2, -\pi/2 \le y \le \pi/2.$
- **3.** Отрезок [A;B] длины 5 двигается на координатной плоскости так, что его концы лежат на параболе $y = 2x^2$. Точка M середина отрезка [A;B]. Найти минимально возможное значение расстояния точки M до оси абсцисс, а также абсциссу точки M, при которой оно достигается.
- **4.** Код замка состоит из трех цифр от 0 до 9. Замок открывается, если сумма цифр кода делится на 3. Найти вероятность того, что случайно набранный код откроет замок.
- **5.** При каких a система уравнений $\begin{cases} |x\cos a + y\sin a 3/\sqrt{2}| + |y\cos a x\sin a| = 3/\sqrt{2} \\ |x y| + |x + y| = 8 \end{cases}$ имеет единственное решение?
- ${f 6.}$ В правильной четырехугольной пирамиде противоположные боковые грани перпендикулярны. Высота пирамиды равна h . Найти радиус шара, касающегося ребер основания и боковых ребер пирамиды или их продолжений.

Задача 1 Ответ:
$$x = \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}$$

Решение

Условие прогрессии: $\log_2(6\sin x) \cdot \log_{2\cos x} 4 = (\log_{2\cos x}(6\sin x))^2$

Преобразование:

$$2\log_{(2\cos x)}(6\sin x) = \left(\log_{(2\cos x)}(6\sin x)\right)^2 \to \log_{(2\cos x)}(6\sin x) \cdot \left(2 - \log_{(2\cos x)}(6\sin x)\right) = 0$$

Если $\log_{(2\cos x)}(6\sin x) = 0$, то все члены прогрессии нулевые.

Случай $\log_{(2\cos x)}(6\sin x) \neq 0$.

$$\log_{(2\cos x)}(6\sin x) = 2 \rightarrow \begin{cases} \cos x > 0, \cos x \neq 1/2 \\ 6\sin x = 4\cos^2 x \end{cases} \rightarrow \begin{cases} \cos x > 0, \cos x \neq 1/2 \\ 2\sin^2 x + 3\sin x - 2 = 0 \end{cases} \rightarrow \begin{cases} \sin x = \frac{1}{2} \\ \cos x > 0 \end{cases}$$

$$\rightarrow x = \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}$$

Задача 2 Ответ
$$\begin{cases} x_1 = -\pi \: / \: 6 \: , \: \begin{cases} x_2 = \pi \: / \: 2 \end{cases} \\ y_1 = -\pi \: / \: 6 \: , \: \begin{cases} y_2 = \pi \: / \: 2 \end{cases} \end{cases}$$

Решение.

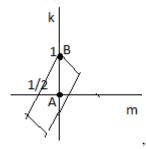
Переход к системе с целочисленными параметрами m и k : $\begin{cases} 2x+y=-\frac{\pi}{2}+2\pi k,\\ x-y=2\pi m \end{cases}$

Решение системы
$$\begin{cases} x = -\pi/6 + 2\pi(m+k)/3 \\ y = -\pi/6 + 2\pi(k-2m)/3 \end{cases}$$

Ограничение прямоугольника: $-\pi \le x \le \pi/2 \to -5/4 \le m+k \le 1$ (*)

$$-\pi/2 \le y \le \pi/2 \to -1/2 \le k + 2m \le 1$$
 (**)

На плоскости параметров (m;k) неравенства (*) и (**) ограничивают параллелограмм,



внутри которого только две точки A(0;0) и B(0,1) с целочисленными координатами.

Им соответствуют решения
$$\begin{cases} x_1 = -\pi \, / \, 6 \\ y_1 = -\pi \, / \, 6 \end{cases} \, \mathrm{u} \begin{cases} x_2 = \pi \, / \, 2 \\ y_2 = \pi \, / \, 2 \end{cases}.$$

Задача 3 Ответ: 1)
$$d_{min} = \frac{19}{8}$$
 2) $x_{min} = \pm \frac{3}{4}$

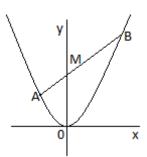
Вариант 0

Отрезок [A;B] длины l двигается на координатной плоскости так, что его концы лежат на параболе $y=kx^2$. Точка M - середина отрезка [A;B] . Найти минимально возможное расстояние точки M до оси абсцисс, а также абсциссу точки M , при которой оно достигается.

Ответ: При
$$|k| l \ge 1$$
 $d_{\min} = \frac{l}{2} - \frac{1}{4|k|}$ для $x_{1,2} = \pm \frac{\sqrt{|k|l-1}}{2|k|}$

При
$$|k|l < 1$$
, $d_{\min} = \frac{|k|l^2}{4}$ для $x = 0$.

Решение.



$$A(x_1; y_1), \ B(x_2; y_2), \ M(x; y) = M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \ y_1 = kx_1^2, \ y_2 = kx_2^2, (x_2 - x_1)^2 + (y_2 - y_1)^2 = l^2,$$

$$(x_2 - x_1)^2 + (kx_2^2 - kx_1^2)^2 = l^2 \to (x_2 - x_1)^2 + k^2(x_2 - x_1)^2(x_2 + x_1)^2 = l^2$$

$$(x_2 - x_1)^2 \left(k^2(x_2 + x_1)^2 + 1\right) = l^2 \to (x_1^2 + x_2^2 - 2x_1x_2)(4k^2x^2 + 1) = l^2$$

$$\left(\frac{y_1 + y_2}{k} - 2x_1x_2\right)(4k^2x^2 + 1) = l^2 \to \frac{2y}{k} = 2x_1x_2 + \frac{l^2}{(4k^2x^2 + 1)}(*)$$

Выразим $2x_1x_2$ из равенства $4x^2 = (x_1 + x_2)^2 = \frac{2y}{k} + 2x_1x_2 \rightarrow 2x_1x_2 = 4x^2 - \frac{2y}{k}$. Подставляя его в (*), получим $\frac{4y}{k} = 4x^2 + \frac{l^2}{k} + \frac{k \cdot l^2}{k}$ (**) Это ордината точки M

$$\frac{4y}{k} = 4x^2 + \frac{l^2}{(4k^2x^2 + 1)} \to y = kx^2 + \frac{k \cdot l^2}{4(4k^2x^2 + 1)} (**).$$
 Это ордината точки M .

Преобразуем выражение (**): $|y| = |k|x^2 + \frac{|k| \cdot l^2}{4(4k^2x^2+1)} = \frac{1}{4|k|} (4k^2x^2+1) + \frac{|k| \cdot l^2}{4(4k^2x^2+1)} - \frac{1}{4|k|}$

Обозначим через $t = (4k^2x^2 + 1) \ge 1$. Тогда расстояние точки M до оси абсцисс равно $|y| = \frac{t}{4|k|} + \frac{|k|l^2}{4t} - \frac{1}{4|k|}$. По-

скольку $a = \frac{t}{4|k|} > 0, \ b = \frac{|k|l^2}{4t} > 0$, то по неравенству о среднем арифметическом и среднем геометрическом

$$\left|y\right| + \frac{1}{4|k|} = a + b \ge 2\sqrt{ab} = \frac{l}{2} \text{ . Равенство достигается при } a = b \longrightarrow \frac{t}{4|k|} = \frac{|k|l^2}{4t} \longrightarrow t_{\text{крит}} = \left|k\right| \cdot l \text{ .}$$

Если $|k| l \ge 1$, то минимальное расстояние равно $|y_{\min}| = \frac{l}{2} - \frac{1}{4|k|}$ достигается при

$$t = |k|l \to 4k^2x^2 + 1 = |k|l \to x^2 = \frac{|k| \cdot l - 1}{4k^2} \to x_{1,2} = \pm \frac{\sqrt{|k| \cdot l - 1}}{2|k|}$$
.

Если |k| l < 1 , то с учетом роста функции |y| на полуоси $t \in [|k| l; +\infty]$ и принимает минимальное значение

$$\left|y_{\min}\right|=rac{|k|\,l^2}{4}\,\,$$
 с учетом ограничения $t\geq 1\,$ при $t=1\,$ для $x=0\,$.

Задача 4 Ответ: P(A) = 0,334, $m_3 = 334$, $n = 10^3$

Решение

Пусть x,y и z — первая, вторая и третья цифры кода. Количество решений уравнения x+y=t , где t — целое число на интервале $0 \le t \le 18$ обозначим через p(t) . Заметим, что

$$p(t) = \begin{cases} t + 1, t \in [0; 9] \\ 19 - t, t \in [10; 18] \end{cases}$$

С помощью этой формулы легко заполнить таблицу числа различных решений уравнения x + y = 3k - z для допустимых значений k = 0, 1, ..., 9 и z = 0, 1, ..., 9

Z K	0	1	2	3	4	5	6	7	8	9
0	1									
1	4	3	2	1						
2	7	6	5	4	3	2	1			
3	10	9	8	7	6	5	4	3	2	1
4	7	8	9	10	9	8	7	6	5	4
5	4	5	6	7	8	9	10	9	8	7
6	1	2	3	4	5	6	7	8	9	10
7				1	2	3	4	5	6	7
8							1	2	3	4
9										1

Пустые клетки таблицы можно заполнить нулями (решений уравнение не имеет). Сумма чисел по всем клеткам таблицы рав-

на количеству кодов, сумма цифр которых делится на 3. Подсчет этой суммы осуществляется с учетом симметрии таблицы (сумма чисел в первых пяти строках равна сумме чисел в последних пяти), а также формулой суммы членов арифметической прогрессии. Число благоприятных кодов $m_3=334$. Общее число кодов равно $n_3=10^3$. Тогда

$$P_3(A) = \frac{334}{1000} = 0,334$$
.

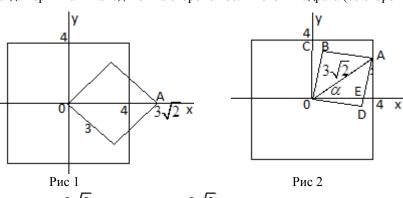
Задача 5 Ответ:
$$a=\pm\arccos\frac{2\sqrt{2}}{3}+\frac{\pi k}{2}, k\in Z$$
 или $a=\arccos\frac{2\sqrt{2}}{3}+\frac{\pi k}{2}, a=\arcsin\frac{2\sqrt{2}}{3}+\frac{\pi k}{2}, k\in Z$

Решение

Множество точек на плоскости с координатами (x; y), удовлетворяющими второму уравнению системы, является границей квадрата с центром в начале координат и сторонами, параллельными координатным осям рис 1. Множество точек, координаты которых удовлетворяют второму уравнению системы, является границей квадрата ABOD рис 2 с диагональю длины $3\sqrt{2}$. Координаты его вершин

$$A(3\sqrt{2}\cos\alpha;3\sqrt{2}\sin\alpha), B\left(3\cos\left(\alpha+\frac{\pi}{4}\right);3\sin\left(\alpha+\frac{\pi}{4}\right)\right), D\left(3\cos\left(\alpha-\frac{\pi}{4}\right);3\sin\left(\alpha-\frac{\pi}{4}\right)\right);O(0;0)$$

С ростом a «малый» квадрат (со стороной 3) вращается относительно начала координат. На рис 2 отмечено его положение при $\alpha = \alpha_1$, когда вершина A находится на стороне «большого» квадрата (со стороной 8).



$$3\sqrt{2}\cos a_1 = 4 \rightarrow \cos a_1 = \frac{2\sqrt{2}}{3} \rightarrow a_1 = \arccos\frac{2\sqrt{2}}{3}$$

Все остальные вершины «малого» квадрата при $a = a_1$ находятся внутри большого:

$$RCOB = \frac{\pi}{4} - a_1 \rightarrow 3\cos\left(\frac{\pi}{4} - a_1\right) = 3 \cdot \frac{\sqrt{2}}{2}\left(\cos a_1 + \sin a_1\right) = 3 \cdot \frac{\sqrt{2}}{2}\left(\frac{2\sqrt{2}}{3} + \frac{1}{3}\right) = \frac{4 + \sqrt{2}}{2} < 4$$

$$REOD = \frac{\pi}{4} - a_1 \rightarrow EO = 3/\cos\left(\frac{\pi}{4} - a_1\right) = \frac{18}{4 + \sqrt{2}} < 4$$

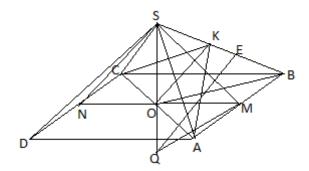
и система имеет единственное решение. По симметрии, при увеличении a точка A появится на другой стороне большого квадрата при $a=a_2=\frac{\pi}{2}-a_1=\arcsin\frac{2\sqrt{2}}{3}$, когда система снова имеет единственное решение. При $a\in(a_1;a_2)$ система решений не имеет. При увеличении a на число кратное $\frac{\pi}{2}$ картина повторяется. Итак, система имеет един-

ственное решение при $a = \arcsin \frac{2\sqrt{2}}{3} + \frac{\pi k}{2}$, $a = \arccos \frac{2\sqrt{2}}{3} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ или в другой форме записи

$$a = \pm a_1 + \frac{\pi k}{2} = \pm \arccos \frac{2\sqrt{2}}{3} + \frac{\pi k}{2}$$
.

Задача 6 Ответ: $R_{1,2} = 2h\sqrt{2 \pm \sqrt{3}}$

Решение.



Обозначения:

SO = h, OM = a, N, M — середины сторон основания, $RMSN = 90^{\circ} \rightarrow h = a, AB = 2a = 2h$,

Q — центр искомого шара; OK - перпендикуляр к ребру SB ; QE - параллельно OK ; OQ = x ;

$$OA = h\sqrt{2} = SM$$
, $SB = h\sqrt{3}$, $RSBO = \alpha = RSOK$; $RAKO = \varphi$

Из площади треугольника SAB:

$$2\sqrt{2}h^2 = AK \cdot h\sqrt{3} \rightarrow AK = \frac{2\sqrt{2}}{\sqrt{3}}h, \sin\varphi = \frac{OA}{AK} = \frac{\sqrt{3}}{2} \rightarrow \varphi = 60^0$$

Из прямоугольного треугольника SOK:

$$OK^2 = \frac{8}{3}h^2 - 2h^2 = \frac{2}{3}h^2 \to \cos\alpha = \frac{OK}{OS} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$QS = h + x$$
 , $QE = QM = R$ — радиус искомого шара. $RSQE = \alpha$

Уравнение для
$$R: (h+x)\cos\alpha = \sqrt{h^2+x^2} \to \frac{2}{3}(h+x)^2 = h^2+x^2 \to x^2-4hx+h^2 = 0 \to x = h\left(2\pm\sqrt{3}\right)$$

Тогда
$$R^2=x^2+h^2=4xh=4h^2\left(2\pm\sqrt{3}\right)$$
 \rightarrow $R_{1,2}=2h\sqrt{2\pm\sqrt{3}}$ (касание ребер или их продолжений)

Задача 1 Ответ: $x \in \emptyset$

Задача 2 Ответ
$$\begin{cases} x_1 = \pi \\ y_1 = \pi \ / \ 2 \end{cases}, \begin{cases} x_2 = 0 \\ y_2 = \pi \ / \ 2 \end{cases}$$

Задача 3 Ответ: 1)
$$d_{min} = \frac{19}{20}$$
 2) $x_{min} = \pm \frac{3}{10}$

Задача 4 Ответ: $m_4 = 254$, $n_4 = 10^3$, P(A) = 0,254

Z	0	1	2	3	4	5	6	7	8	9
K										
0	1									
1	5	4	3	2	1					
2	9	8	7	6	5	4	3	2	1	
3	7	8	9	10	9	8	7	6	5	4
4	3	4	5	6	7	8	9	10	9	8
5	·		1	2	3	4	5	6	7	8
6	·					1	2	3	4	5

Вадача 5

$$a \in \left(\arccos\frac{3}{4} + \frac{3}{4}\right)$$

Задача 6

$$R = \frac{\sqrt{3}}{2}b$$

Вариант 3

Задача 1 Ответ:
$$x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$

Задача 2 Ответ
$$\begin{cases} x = -\frac{\pi}{8} \\ y = \frac{3\pi}{4} \end{cases}$$

Задача 3 Ответ: 1)
$$d_{min} = \frac{51}{52}$$
 2) $x_{min} = \pm \frac{5}{26}$

Задача 4 Ответ:
$$m_5 = 200$$
, $n_5 = 10^3$, $P(A) = 0,2$

K	0	1	2	3	4	5	6	7	8	9
0	1									
1	6	5	4	3	2	1				
2	9	10	9	8	7	6	5	4	3	2
3	4	5	6	7	8	9	10	9	8	7
4			1	2	3	4	5	6	7	8
5								1	2	3

Задача 5

$$a \in \left(-\frac{\pi}{\epsilon} + \frac{\pi k}{2}\right)$$

Запача 6

Otbet:
$$S = \frac{a^2 \sqrt{3}}{6}$$

Вариант 4

Задача 1 Ответ:
$$x = (-1)^k \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$

Задача 2 Ответ
$$\begin{cases} x = -\pi \\ y = \frac{\pi}{2} \end{cases}$$
; $\begin{cases} x = \pi \\ y = \frac{\pi}{2} \end{cases}$; $\begin{cases} x = 0 \\ y = \frac{\pi}{2} \end{cases}$;

Задача 3 Ответ: 1)
$$d_{min} = \frac{99}{20}$$
 2) $x_{min} = \pm \frac{7}{10}$

Задача 4 Ответ: $m_6 = 167$, $n_6 = 10^3$, P(A) = 0,167

Z K	0	1	2	3	4	5	6	7	8	9
0	1									
1	7	6	5	4	3	2	1			
2	7	8	9	10	9	8	7	6	5	4
3	1	2	3	4	5	6	7	8	9	10
4							1	2	3	4

Задача 5 Ответ: $a = \pm \frac{\pi}{4} + \frac{\pi k}{2}, k$

Задача 6

Otbet:
$$V = \frac{4(7+5\sqrt{2})}{3}r^3$$