Физика. 9 класс

Решения и критерии оценивания Вариант 1

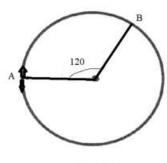


Рис. 1

Задача 1. Два автомобиля одновременно отправились из пункта A в пункт B (см. рис. 1). Первый автомобиль двигался по часовой стрелки, второй — пртив часовой.

Известно, что первый автомобиль двигался одну треть своего пути со скоростью v_1 , оставшееся время со скоростью в два раза меньшей. Второй автомобиль двигался первую треть пути со скоростью v_2 , оставшийся отрезок со скоростью в два раза большей. Определите скорость второго автомобиля, если $v_1 = 55\frac{\kappa_M}{v_{3C}}$. Пункта В они достигли одновременно.

Решение:

Обозначим L_0 – длину окружности,

Путь, пройденный первым автомобилем:

$$L_1 = \frac{1}{3}L_0 \tag{1}$$

Путь, пройденный вторым автомобилем:

$$L_2 = \frac{2}{3}L_0 = 2L_1 \tag{2}$$

Время в пути первого автомобиля:

$$t_1 = \frac{\frac{1}{3}L_1}{v_1} + \frac{\frac{2}{3}L_1}{v_1/2} = \frac{5}{3}\frac{L_1}{v_1} = \frac{5}{9}\frac{L_0}{v_1}$$
(3)

Время в пути второго автомобиля:

$$t_1 = \frac{\frac{1}{3}L_2}{v_2} + \frac{\frac{2}{3}L_2}{2v_2} = \frac{2}{3}\frac{L_2}{v_2} - \frac{4}{9}\frac{L_0}{v_2}$$
 (4)

Из Соотношений (3) и (4) видно, что

$$v_2 = \frac{4v_1}{5} = 44 \text{ km/qac} \tag{5}$$

Критерии оценивания:

№	Критерий	Баллы
1	Указано соотношение между	3
	путями автомобилей с помощью	
	формул и или словами	
2	Найдено время движения первого	4
	автомобиля, через L_1 или L_0	
3	Найдено время движения второго	4
	автомобиля, через L_2 или L_0	
4	Найдено соотношение между	3
	сторостями	
5	Найдено численное значение	1
	скорости v_2	
	Итого	15

Если перепутали направление, но задача решена правильно в остальном, то 10 баллов.

Задача 2. Специалисты Ленинградского института «Гипрорыбфлот» в конце 80-х годов XX века сконструировали автомобиль подводник. Машина была способна передвигаться со скоростью v=6 км/час на максимальной глубине 40 м.

Определите объём полостей в автомобиле.

Указание: считать, что все детали автомобиля выполнены из алюминия плотностью $\rho_1=2700~{\rm kr/m^3}$, плотность воздуха в полости $\rho_2=1$,3 кг/м³, плотность воды $\rho_0=1000~{\rm kr/m^3}$. Масса короба и всех устройств автомобиля m_1 =1300 кг, масса человека m_3 =70 кг.

Решение:

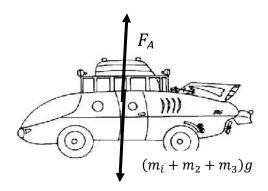


Рис.2

Сила Архимеда, действующая на автомобиль равна:

$$F_A = \rho_0 g V = \rho_0 g (V_1 + V_2), \tag{6}$$

где

$$V_1 = \frac{m_1}{\rho_1} \tag{7}$$

- объём алюминиевых деталей, V_2 - объём полостей автомобиля с воздухом.

Для того чтобы автомобиль не тонул и не всплывал, необходимо равенство сил:

$$F_A = (m_1 + m_2 + m_3)g, (8)$$

где

$$m_2 = \rho_2 V_2 \tag{9}$$

масса газа в полостях.

Получаем из уравнений

$$\rho_0 g(V_1 + V_2) = (m_1 + \rho_2 V_2 + m_3)g \tag{10}$$

Объём полостей в машине

$$V_2 = \frac{m_1 + m_3 - \frac{\rho_0}{\rho_1} m_1}{\rho_0 - \rho_1} = 0,889 \text{ m}^3.$$
 (11)

Критерии оценивания:

No॒	Критерий	Баллы
1	Записано равенство сил (8)	3
2	Записана формула для расчета	2
	массы газа (9)	
3	Записана формула расчета объёма	2
	алюминиевых деталей (7)	
4.	Получена формула для расчета	6
	объёма полости	
5	Получено значение объёма	2
	полости	
	Итого	15

Задача 3. На рис. представлена система, состоящая из невесомых нитей, блоков, трех грузов массами m_1, m_2, m_3 . Определите массу третьего груза, если угол ABC прямой, $m_1 = 8$ кг, $m_2 = 10$ кг. Трения в блоках нет. Система находится в равновесии. Ускорение свободного падения принять за g = 10 м/с².

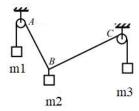


Рис.3

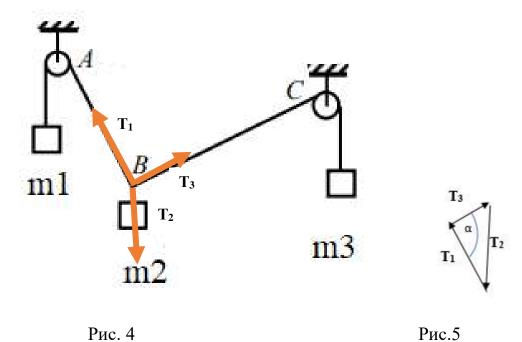
Решение:

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{12}$$

$$T_2 = m_2 g \tag{13}$$

$$T_3 = m_3 g \tag{14}$$



Для точки В запишем равенство сил (рис.):

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0 \tag{15}$$

Из векторной диаграммы (Рис. 5)сил видно, что

$$.T_2^2 = T_1^2 + T_3^2 - 2T_1T_3\cos\alpha\tag{16}$$

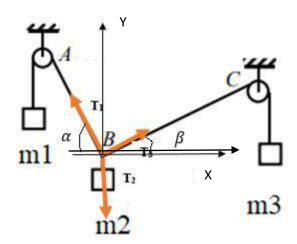
. Подставив (12), (13), (14) в (16) и учтя, что в нашем случае α =90 0 получим формулу для расчета массы:

$$m_3 = \sqrt{m_2^2 - m_1^2} = 6 \text{ K}\Gamma.$$
 (17)

No॒	Критерий	Баллы
1	Найдены силы натяжения нитей по 2 балла за каждую	6
2	Записано условие равновесия для точки В	2
4	Составлена векторная диаграмма	5
5	Записана теорем косинусов	5

6		
	Записана формула для расчета	5
	m_2	
7	Получен результат	2
	Итого	25

Второй вариант решения:



$$\alpha + \beta = 90 \tag{18}$$

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{19}$$

$$T_2 = m_2 g \tag{20}$$

$$T_3 = m_3 g \tag{21}$$

При условии равновесия для точки В выполняется равенство:

$$\vec{T_1} + \vec{T_2} + \vec{T_3} = 0 \tag{22}$$

В проекции на ось У получаем выражение:

$$T_1 \sin \alpha + T_3 \sin \beta = T_2 \tag{23}$$

В проекции на ось Х получаем выражение:

$$T_1 \cos \alpha = T_3 \cos \beta \tag{24}$$

$$\cos \alpha = \sin \beta \tag{25}$$

Решая совместно уравнения (24), (19), ((21) получаем:

$$tg \beta = \frac{m_3}{m_1} - \frac{\sin \beta}{\sqrt{1 - \sin^2 \beta}}$$
 (26)

$$\sin \beta = \frac{m_3}{\sqrt{m_3^2 + m_1^2}} \tag{27}$$

$$\cos\beta = \sin\alpha = \frac{m_1}{\sqrt{m_3^2 + m_1^2}} \tag{28}$$

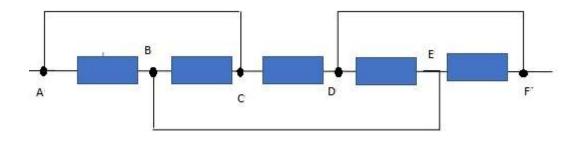
Подставим уравнения (28) и 27 в (23) и выразим m_3 получаем:

$$\sqrt{m_2^2 - m_1^2} = m_3 = 6 \text{ KF}$$
 (29)

Критерии оценивания:

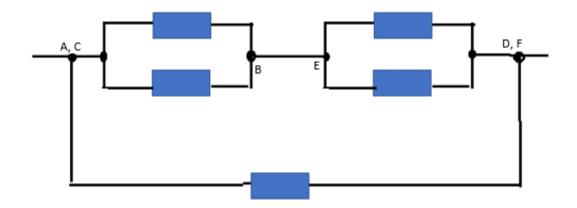
№	Критерий	Баллы
1	Найдены силы натяжения нитей по 2 балла за каждую	6
2	Записано условие равновесия для точки В	2
4	Записано уравнение для сил натяжения в проекции на ось х	2
5	Записано уравнение для сил натяжения в проекции на ось х	2
6	Указано соотношение 18	1
7	Указано соотношение 25	1
8	Получено выражение 26	2
9	Получено выражение 27	1
10	Получено выражение 28	1
11	Записана формула для расчета	5
	m_3	
12	Получен результат	2
	Итого	25

Задача 4. Пять резисторов сопротивлением R каждый соединены перемычками, как показано на рисунке. Определите значение сопротивление каждого резистора, а также ток в каждой перемычке. Общее сопротивление цепи R_0 =10 Ом. Падение напряжения между точками A и F равно $U_0 = 48~B$.



Решение:

Схему можно преобразовать следующим образом рис.



Сопротивление между точками А,С и Е,D равны между собой:

$$R_{A,B} = R_{E,D} = \frac{R}{2}.$$
 (30)

Сопротивление между точками А ,D по верхней ветке схемы равно:

$$R_{A,D} = R_{E,D} + R_{A,B} = R. (31)$$

Полное сопротивление цепи между точками А, Гравно:

$$R_0 = \frac{R}{2}. (32)$$

Сопротивление каждого резистора равно:

$$R = 2R_0 = 20 \text{ Om.}$$
 (33)

Полная сила тока протекающая по цепи:

$$I_0 = \frac{U_0}{R_0} = 4,8A \tag{34}$$

В каждой из перемычек бежит ток равный:

$$I = \frac{I_0}{2} = 2,4 A, \tag{35}$$

т.к. сопротивления верхней и нижней веток схемы одинаковые, значит и токи в них бегут одинаковые, равные половине полного тока.

№	Критерий	Баллы
1	Представлена эквивалентная схема	10
2	Найдено полное сопротивление схемы	4
	Найдено сопротивление одного резистора	2

3	Указано, что в каждой перемычке бежит одинаковый ток	2
4	Найдено значение тока через	2
	перемычки	
	Итого:	20

Задача 5. В середине 20 века СССР и США проводили испытания атомных бомб. Первая атомная бомба США имела заряд был приблизительно эквивалентный 20 килотоннам в тротиловом эквиваленте. Оцените заряд первой атомной бомбы испытанной СССР тоже в тротиловом эквиваленте, если отношение радиусов распространения ударных волн в один момент времени от момента взрыва составляло $\frac{R_2}{R_1} = 1,02$, где R_2 -радиус ударной волны в момент времени t c от бомбы, произведенной СССР, R_1 -от бомбы, произведенной США. Указания: считать взрыв атомной бомбы точечным, то есть вся энергия Е взрыва выделяется мгновенно, радиус R распространения ударной волны зависит от времени t, энергии взрыва E, плотности ρ атмосферы.

Решение:

Решаем методом размерностей. Радиус вектор зависит от энергии, плотности атмосферы, времени распространения:

$$R = \varphi(E, \rho, t) \tag{36}$$

$$R = const E^{\alpha} \rho^{\beta} t^{\gamma} \quad () \tag{37}$$

Запишем размерности каждой из величин, входящих в формулу:

$$[E] = M^2 \cdot K\Gamma \cdot c^{-2}; \quad [\rho] = K\Gamma \cdot M^{-3}; [t] = c; \quad [R] = M$$
 (38)

Из уравнений (37), (38)) получаем систему уравнений:

$$1 = 2\alpha - 3\beta \tag{39}$$

$$0 = \alpha + \beta \tag{40}$$

$$0 = -2\alpha + \gamma \tag{41}$$

Получаем

$$\beta = -\frac{1}{5}; \quad \alpha = \frac{1}{5}; \gamma = \frac{z}{5}$$
 (42)

Радиус зависимости распространения ударной волны от атомной бомбы равен:

$$R = const \left(\frac{E}{\rho}\right)^{1/5} t^{2/5} \tag{43}$$

Отношение радиусов за одинаковый отрезок времени от момента взрыва равно:

$$\frac{R_2}{R_1} = \left(\frac{E_2}{E_1}\right)^{1/5} \tag{44}$$

Заряд первой атомной бомбы испытанной СССР равен

$$E_2 = E_1 \left(\frac{R_2}{R}\right)^5 \tag{45}$$

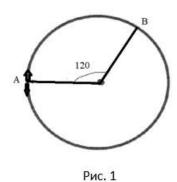
 $E_2 = 58$ Мегатонны в тротиловом эквиваленте. (46)

№	Критерий	Баллы
1	Записана формула 37	4
2	Записаны размерности каждой из величин, входящих в формулу (37) — по 1 баллу за каждую величину	4
4	Составлены уравнения (39), (40),(41)- по 2 балла за каждое	6
5	Получены соотношения (42)- по 1 баллу за каждое	3
6	Получены соотношения (43)	2
	Записано соотношение 44	2
	Записана формула для расчета заряда	2
	Поучено значение энергии	2
	Итого	25

Физика. 9 класс

Решения и критерии оценивания Вариант 2

Задача 1. Два автомобиля одновременно отправились из пункта A в пункт B (см. рис. 1). Первый автомобиль двигался по часовой стрелке, второй – против часовой.



Известно, что первый автомобиль двигался одну четверть своего пути со скоростью v_1 , оставшееся время со скоростью в три раза меньшей. Второй автомобиль двигался первую четверть пути со скоростью v_2 , оставшийся отрезок со скоростью в 3 раза большей. Определите скорость первого автомобиля, если $v_2 = 45 \, \frac{\text{км}}{\text{час}}$. Пункта В они достигли одновременно.

Решение:

Обозначим L_0 – длину окружности,

Путь, пройденный первым автомобилем:

$$L_1 = \frac{1}{3}L_0 \tag{1}$$

Путь, пройденный вторым автомобилем:

$$L_2 = \frac{2}{3}L_0 = 2L_1 \tag{2}$$

Время в пути первого автомобиля:

$$t_1 = \frac{\frac{1}{3}L_1}{v_1} + \frac{\frac{2}{3}L_1}{v_1/3} = \frac{7}{3}\frac{L_1}{v_1} = \frac{7}{9}\frac{L_0}{v_1}$$
(3)

Время в пути второго автомобиля:

$$t_2 = \frac{\frac{1}{4}L_2}{v_2} + \frac{\frac{3}{4}L_2}{2v_2} = \frac{5}{8}\frac{L_2}{v_2} - \frac{10}{24}\frac{L_0}{v_2}$$
 (4)

Из Соотношений (3) и (4) видно, что

$$v_1 = \frac{28v_2}{15} = 84 \text{ km/qac} \tag{5}$$

Критерии оценивания:

№	Критерий	Баллы
1	Указано соотношение между	3
	путями автомобилей с помощью	
	формул и или словами	
2	Найдено время движения первого	4
	автомобиля, через L_1 или L_0	
3	Найдено время движения второго	4
	автомобиля, через L_2 или L_0	
4	Найдено соотношение между	3
	сторостями	
5	Найдено численное значение	1
	скорости v_2	
	Итого	15

Если перепутали направление, но задача решена правильно в остальном, то 10 баллов

Задача 2. Японские специалисты сконструировали автомобиль подводник.. Машина была способна передвигаться со скоростью $v=10\,$ км/час на максимальной глубине 30 м.

Определите объём полостей в автомобиле.

Автомобиль полностью выполнен из современного высокопрочного материала плотностью $\rho_1=1400~{\rm kr/m^3},$ плотность воздуха в полости $\rho_2=1,3~{\rm kr/m^3},$ плотность воды $\rho_0=1000~{\rm kr/m^3}.$ Масса короба и всех устройств автомобиля $m_1=800~{\rm kr},$ масса человека $m_3=70~{\rm kr}.$

Решение:

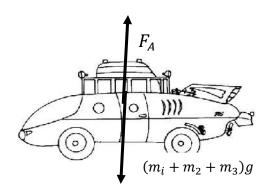


Рис.2

Сила Архимеда, действующая на автомобиль равна:

$$F_A = \rho_0 g V = \rho_0 g (V_1 + V_2), \tag{6}$$

где

$$V_1 = \frac{m_1}{\rho_1} \tag{7}$$

- объём алюминиевых деталей, V_2 - объём полостей автомобиля с воздухом.

Для того чтобы автомобиль не тонул и не всплывал, необходимо равенство сил:

$$F_A = (m_1 + m_2 + m_3)g, (8)$$

где

$$m_2 = \rho_2 V_2 \tag{9}$$

масса газа в полостях.

Получаем из уравнений

$$\rho_0 g(V_1 + V_2) = (m_1 + \rho_2 V_2 + m_3)g \tag{10}$$

Объём полостей в машине

$$V_2 = \frac{m_1 + m_3 - \frac{\rho_0}{\rho_1} m_1}{\rho_0 - \rho_1} = 0.814 \text{ m}^3. \tag{11}$$

Критерии оценивания:

No॒	Критерий	Баллы
1	Записано равенство сил (8)	3
2	Записана формула для расчета	2
	массы газа (9)	
3	Записана формула расчета объёма	2
	алюминиевых деталей (7)	
4.	Получена формула для расчета	6
	объёма полости	
5	Получено значение объёма	2
	полости	
	Итого	15

Задача 3. На рис. представлена система, состоящая из невесомых нитей, блоков, трех грузов массами m_1, m_2, m_3 . Определите массу второго груза, если угол ABC прямой, $m_1 = 12 \; \mathrm{kr}, \quad m_3 = 9 \; \mathrm{kr}$. Трения в блоках нет. Система находится в равновесии. Ускорение свободного падения принять за $g = 10 \; \mathrm{m/c^2}$.

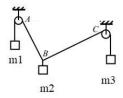


Рис.3

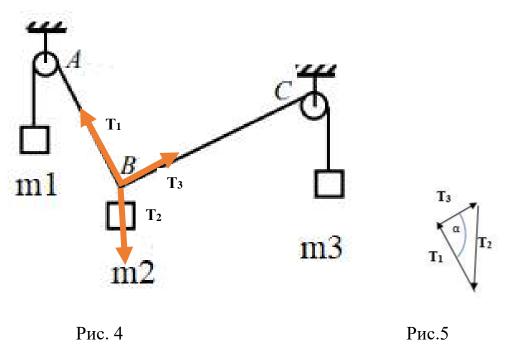
Решение:

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{12}$$

$$T_2 = m_2 g \tag{13}$$

$$T_3 = m_3 g \tag{14}$$



Для точки В запишем равенство сил (рис.):

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0 \tag{15}$$

Из векторной диаграммы (Рис. 5)сил видно, что

$$.T_2^2 = T_1^2 + T_3^2 - 2T_1T_3\cos\alpha\tag{16}$$

. Подставив (12), (13), (14) в (16) и учтя, что в нашем случае α =90 0 получим формулу для расчета массы:

$$m_2 = \sqrt{m_3^2 + m_1^2} = 15 \text{ K}\Gamma.$$
 (17)

№	Критерий	Баллы
1	Найдены силы натяжения нитей по 2 балла за каждую	6
2	Записано условие равновесия для точки В	2
4	Составлена векторная диаграмма	5
5	Записана теорем косинусов	5
6	Записана формула для расчета	5

	m_2	
7	Получен результат	2
	Итого	25

Второй вариант решения:

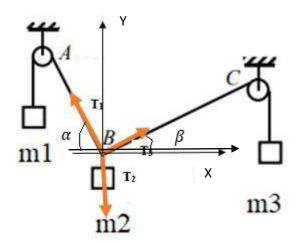


Рис.7

$$\alpha + \beta = 90 \tag{18}$$

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{19}$$

$$T_2 = m_2 g \tag{20}$$

$$T_3 = m_3 g \tag{21}$$

При условии равновесия для точки В выполняется равенство:

$$\vec{T_1} + \vec{T_2} + \vec{T_3} = 0 \tag{22}$$

В проекции на ось У получаем выражение:

$$T_1 \sin \alpha + T_3 \sin \beta = T_2 \tag{23}$$

В проекции на ось Х получаем выражение:

$$T_1 \cos \alpha = T_3 \cos \beta \tag{24}$$

$$\cos \alpha = \sin \beta \tag{25}$$

Решая совместно уравнения (24), (19), ((21) получаем:

$$tg \beta = \frac{m_3}{m_1} = \frac{\sin \beta}{\sqrt{1 - \sin^2 \beta}}$$
 (26)

$$\sin \beta = \frac{m_3}{\sqrt{m_3^2 + m_1^2}} \tag{27}$$

$$\cos\beta = \sin\alpha = \frac{m_1}{\sqrt{m_3^2 + m_1^2}} \tag{28}$$

Подставим уравнения (28) и 27 в (23) получаем:

$$\sqrt{m_1^2 + m_3^2} = m_2 = 15 \text{ K} \Gamma \tag{29}$$

Критерии оценивания:

№	Критерий	Баллы
1	Найдены силы натяжения нитей	6
	по 2 балла за каждую	
2	Записано условие равновесия для	2
	точки В	
4	Записано уравнение для сил	2
	натяжения в проекции на ось х	
5	Записано уравнение для сил	2
	натяжения в проекции на ось х	
6	Указано соотношение 18	1
7	Указано соотношение 25	1
8	Получено выражение 26	2
9	Получено выражение 27	1
10	Получено выражение 28	1
11	Записана формула для расчета	5
	m_3	
12	Получен результат	2
	Итого	25

Задача 4. Пять резисторов сопротивлением R каждый соединены перемычками, как показано на рисунке. Определите значение сопротивление каждого резистора, а также ток в каждой перемычке. Общее сопротивление цепи R_0 =20 Ом. Падение напряжения между точками A и F равно U_0 = 100~B.

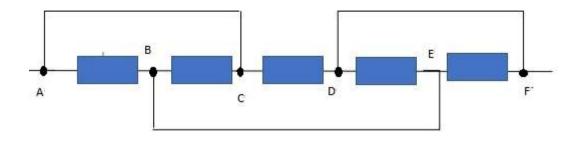


Рис. 8

Схему можно преобразовать следующим образом рис.

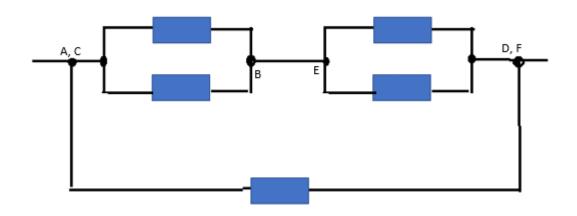


Рис. 9

Сопротивление между точками А,С и Е,D равны между собой:

$$R_{A,B} = R_{E,D} = \frac{R}{2}. (30)$$

Сопротивление между точками А ,D по верхней ветке схемы равно:

$$R_{A,D} = R_{E,D} + R_{A,B} = R. (31)$$

Полное сопротивление цепи между точками А, Гравно:

$$R_0 = \frac{R}{2}. (32)$$

Сопротивление каждого резистора равно:

$$R = 2R_0 = 40 \text{ Om.}$$
 (33)

Полная сила тока протекающая по цепи:

$$I_0 = \frac{U_U}{R_0} = 5A \tag{34}$$

В каждой из перемычек бежит ток равный:

$$I = \frac{I_0}{2} = 2,5 A, \tag{35}$$

т.к. сопротивления верхней и нижней веток схемы одинаковые, значит и токи в них бегут одинаковые, равные половине полного тока.

№	Критерий	Баллы
1	Представлена эквивалентная схема	10
2	Найдено полное сопротивление	4

	схемы	
3	Найдено сопротивление одного	2
	резистора	
4	Указано, что в каждой перемычке	2
	бежит одинаковый ток	
5	Найдено значение тока	2
	Итого:	20

Задача 5. В середине 20 века СССР и США проводили испытания атомных бомб. Атомная бомба США В-41 (Мк-41)имела заряд был приблизительно эквивалентный 25 мегатоннам в тротиловом эквиваленте. Оцените в тротиловом эквиваленте самую мощную атомною бомбу (Царь-бомба (АН602)), испытанную в СССР. Известно, что отношение радиусов распространения ударных волн в один момент времени от момента взрыва составляло $\frac{R_2}{R_1} = 1,18$, где R_2 -радиус ударной волны в момент времени t c от бомбы, произведенной СССР, R_1 -от бомбы, произведенной США.

Указания: считать взрыв атомной бомбы точечным, то есть вся энергия Е взрыва выделяется мгновенно, радиус R распространения ударной волны зависит от времени t, энергии взрыва E, плотности ρ атмосферы.

Решение:

Решаем методом размерностей. Радиус вектор зависит от энергии, плотности атмосферы, времени распространения:

$$R = \varphi(E, \rho, t) \tag{36}$$

$$R = const E^{\alpha} \rho^{\beta} t^{\gamma} \quad ()$$
 (37)

Запишем размерности каждой из величин, входящих в формулу (37):

$$[E] = M^2 \cdot K\Gamma \cdot c^{-2}; \quad [\rho] = K\Gamma \cdot M^{-3}; [t] = c; \quad [R] = M$$
 (38)

Из уравнений () и () получаем систему уравнений:

$$1 = 2\alpha - 3\beta \tag{39}$$

$$0 = \alpha + \beta \tag{40}$$

$$0 = -2\alpha + \gamma \tag{41}$$

Получаем

$$\beta = -\frac{1}{5}; \quad \alpha = \frac{1}{5}; \ \gamma = \frac{z}{5}$$
 (42)

Радиус зависимости распространения ударной волны от атомной бомбы равен:

$$R = const \left(\frac{E}{\rho}\right)^{1/5} t^{2/5} \tag{43}$$

Отношение радиусов за одинаковый отрезок времени от момента взрыва равно:

$$\frac{R_2}{R_1} = \left(\frac{E_2}{E_1}\right)^{1/5} \tag{44}$$

Заряд первой атомной бомбы испытанной СССР равен

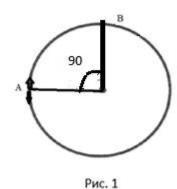
$$E_2 = E_1 \left(\frac{R_2}{R}\right)^5 \tag{45}$$

 $E_2 = 57,2$ Мегатонны в тротиловом эквиваленте. (46)

No	Критерий	Баллы
1	Записана формула 37	4
2	Записаны размерности	4
	каждой из величин, входящих	
	в формулу (37) – по 1 баллу за	
	каждую величину	
4	Составлены уравнения (39),	6
	(40),(41)- по 2 балла за каждое	
5	Получены соотношения (42)- по 1	3
	баллу за каждое	
6	Получены соотношения (43)	2
7	Записано соотношение 44	2
8	Записана формула для расчета	2
	заряда	
9	Поучено значение энергии	2
	Итого	25

Физика. 9 класс

Решения и критерии оценивания Вариант 3



Задача 1. Два автомобиля одновременно отправились из пункта A в пункт B (см. рис. 1). Первый автомобиль двигался по часовой стрелке, второй – против часовой.

Известно, что первый автомобиль двигался две трети времени со скоростью v_1 , оставшееся время со скоростью в два раза меньшей. Второй автомобиль двигался первую треть времени со скоростью v_2 , оставшийся отрезок со скоростью в два раза большей. Определите скорость второго автомобиля, если $v_1 = 56 \frac{\kappa_M}{4ac}$, пункта В они достигли одновременно

Решение:

Обозначим L_0 – длину окружности,

Путь, пройденный первым автомобилем:

$$L_1 = \frac{1}{4}L_0\tag{1}$$

Путь, пройденный вторым автомобилем:

$$L_2 = \frac{3}{4}L_0 = 3L_1 \tag{2}$$

Время в пути первого автомобиля:

$$t_1 = \frac{\frac{1}{3}L_1}{v_1} + \frac{\frac{2}{3}L_1}{v_1/3} = \frac{7}{3}\frac{L_1}{v_1} = \frac{7}{12}\frac{L_0}{v_1}$$
(3)

Время в пути второго автомобиля:

$$t_1 = \frac{\frac{1}{3}L_2}{v_2} + \frac{\frac{2}{3}L_2}{2v_2} = \frac{2}{3}\frac{L_2}{v_2} = \frac{1}{2}\frac{L_0}{v_2}$$
 (4)

Из Соотношений (3) и (4) видно, что

$$v_1 = \frac{12v_2}{14} = 48 \text{ km/qac} \tag{5}$$

No॒	Критерий	Баллы
1	Указано соотношение между	3
	путями автомобилей с помощью	

	формул и или словами	
2	Найдено время движения первого	4
	автомобиля, через L_1 или L_0	
3	Найдено время движения второго	4
	автомобиля, через L_2 или L_0	
4	Найдено соотношение между	3
	сторостями	
5	Найдено численное значение	1
	скорости v_2	
	Итого	15

Если перепутали направление, но задача решена правильно в остальном, то 10 баллов

Задача 2. Японские специалисты сконструировали автомобиль подводник.. Машина была способна передвигаться со скоростью v = 7,2 км/час на максимальной глубине 30 м.

Оцените мощность аккумуляторов, используемых на этом автомобиле, развиваемую двигателями, против силы сопротивления воды. Коэффициент полезного действия советских аккумуляторов, используемых на данном автомобиле, был 80%. Плотность воды $\rho_0=1000~{\rm kr/m}^3$. Площадь поперечного сечения автомобиля $S=0.8~{\rm m}^2$.

Указание: считать, что сила сопротивления образуется за счет неупругого соударения молекул воды об автомобиль.

Решение:

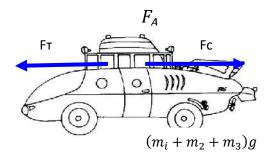


Рис.2

Сила сопротивления образуется за счет импульса, передаваемого водой поперечному сечению автомобиля при лобовом соударении

Число молекул воды, налетающих на поперечное сечение, п- концентрация молекул:

$$N = vnS\Delta t \tag{6}$$

Импульс всех этих молекул равен:

$$P = Nm_0 v = nSm_0 v^2 \Delta t = \rho S v^2 \Delta t, \tag{7}$$

Импульс молекул воды передается автомобилю:

$$\Delta P_{a} = P$$

$$F_{c} = \frac{\Delta P_{a}}{\Delta t} = \rho S v^{2} \quad , \tag{8}$$

Сила сопротивления остается величиной постоянной, тогда работа против силы сопротивления равна:

$$A_{c}=F_{c}\Delta x = \rho S v^{3} \Delta t, \qquad (9)$$

где

$$\Delta \mathbf{x} = v \Delta t$$
 путь

С другой стороны эта же работа равна, энергии получаемой от аккумулятора на преодоление силы сопротивления:

$$A_{c=} \eta P_{\vartheta} \Delta t \tag{10}$$

Из (9) и (11) получаем:

$$P_{3} = \frac{\rho S v^{3}}{n} = 8000 \text{ Br} \tag{11}$$

Критерии оценивания:

№	Критерий	Баллы
1	Указано, что сила сопротивления образуется за счет импульса,	2
	передаваемого водой поперечному сечению автомобиля	
2	Найдена сила сопротивления:	5
	1. Число молекул, ударяющихся об автомобиль – 1 балл	
	2. Записан Импульс молекул воды – 1 балл	
	3. Записан импульс получаемый автомобилем -2 балла	
	4. Получена формула(9) – 1 балл	
3	Записана формула (9)	2
4.	Записана формула (10)	2
5	Записана формула (11)	3
	Получен результат для P_9	1
	Итого	15

Задача 3. На рис. представлена система, состоящая из невесомых нитей, блоков, трех грузов массами m_1, m_2, m_3 . Определите массу первого груза, если угол ABC прямой, $m_2 = 15$ кг, $m_3 = 9$ кг. Трения в блоках нет. Система находится в равновесии. Ускорение свободного падения принять за g = 10 м/с².

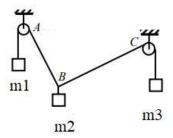


Рис.3

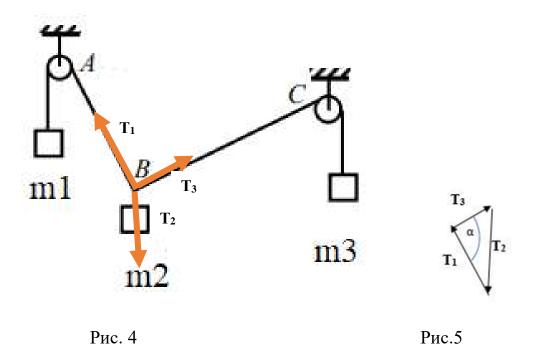
Решение:

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{12}$$

$$T_2 = m_2 g \tag{13}$$

$$T_3 = m_3 g \tag{14}$$



Для точки В запишем равенство сил (рис.):

$$\vec{T}_1 + \vec{T}_2 + \vec{T}_3 = 0 \tag{15}$$

Из векторной диаграммы (Рис. 5)сил видно, что

$$.T_2^2 = T_1^2 + T_3^2 - 2T_1T_3\cos\alpha\tag{16}$$

. Подставив (12), (13), (14) в (16) и учтя, что в нашем случае α =90 0 получим формулу для расчета массы:

$$m_1 = \sqrt{m_2^2 - m_3^2} = 12 \text{ KG}.$$
 (17)

Критерии оценивания:

No॒	Критерий	Баллы
1	Найдены силы натяжения нитей по 2 балла за каждую	6
2	Записано условие равновесия для точки В	2
4	Составлена векторная диаграмма	5
5	Записана теорем косинусов	5
6		
	Записана формула для расчета m_2	5
7	Получен результат	2
	Итого	25

Второй вариант решения:

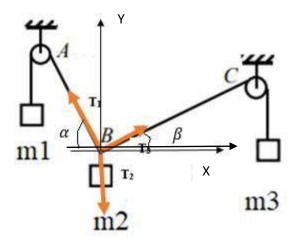


Рис. 6
$$\alpha + \beta = 90$$
 (18)

Из условий равновесия для каждого из грузов имеем:

$$T_1 = m_1 g \tag{19}$$

$$T_2 = m_2 g \tag{20}$$

$$T_3 = m_3 g \tag{21}$$

При условии равновесия для точки В выполняется равенство:

$$\vec{T_1} + \vec{T_2} + \vec{T_3} = 0 \tag{22}$$

В проекции на ось У получаем выражение:

$$T_1 \sin \alpha + T_3 \sin \beta = T_2 \tag{23}$$

В проекции на ось Х получаем выражение:

$$T_1 \cos \alpha = T_3 \cos \beta \tag{24}$$

$$\cos \alpha = \sin \beta \tag{25}$$

Решая совместно уравнения (24), (19), ((21) получаем:

$$tg \beta = \frac{m_3}{m_1} = \frac{\sin \beta}{\sqrt{1 - \sin^2 \beta}}$$
 (26)

$$\sin \beta = \frac{m_3}{\sqrt{m_3^2 + m_1^2}} \tag{27}$$

$$\cos\beta = \sin\alpha = \frac{m_1}{\sqrt{m_3^2 + m_1^2}} \tag{28}$$

Подставим уравнения (28) и 27 в (23) получаем:

$$m_1 = \sqrt{m_2^2 - m_3^2} = 12 \text{ K}\Gamma$$
 (29)

No	Критерий	Баллы
1	Найдены силы натяжения нитей по 2 балла за каждую	6
2	Записано условие равновесия для точки В	2
4	Записано уравнение для сил натяжения в проекции на ось х	2
5	Записано уравнение для сил натяжения в проекции на ось х	2
6	Указано соотношение 18	1
7	Указано соотношение 25	1
8	Получено выражение 26	2
9	Получено выражение 27	1
10	Получено выражение 28	1
11	Записана формула для расчета	5
	m_3	
12	Получен результат	2
	Итого	25

Задача 4. Восемь резисторов сопротивлением R соединены, как показано на рисунке. Определите значение сопротивление каждого резистора, а также ток в каждом сопротивлении. Общее сопротивление цепи R_0 =30 Ом. Падение напряжения между точками A и F равно $U_0 = 60~B$.

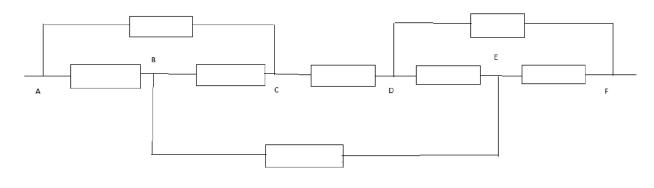
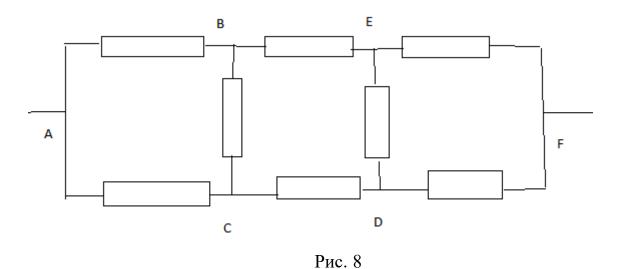


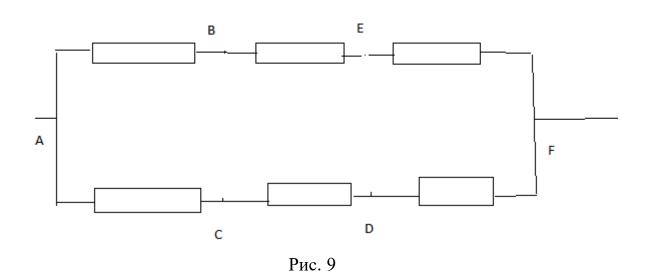
Рис. 7

Решение:

Схему можно преобразовать следующим образом рис.



Сопротивление между точками с одинаковыми потенциалами можно убрать. Получим ещё одну эквивалентную схему.



Сопротивление между точками ABEF и ACDF равны между собой:

$$R_{\text{ABEF}} = R_{\text{ACDF}} = 3R. \tag{30}$$

Полное сопротивление цепи между точками АF равно:

$$R_0 = 3\frac{R}{2}. (31)$$

Сопротивление каждого резистора равно:

$$R = \frac{2R_0}{3} = 10 \text{ Om.}$$
 (32)

Полная сила тока протекающая по цепи:

$$I_0 = \frac{U_0}{R_0} = 2A \tag{33}$$

Через сопротивления $R_{\rm BC}$, $R_{\rm ED}$ - ток не бежит:

$$I_{BC} = I_{ED} = 0 \tag{34}$$

Через остальные сопротивления сопротивления бегут одинаковые токи, равные половине полного тока.

$$I = \frac{I_0}{2} = 1 A, \tag{35}$$

Критерии оценивания:

№	Критерий	Баллы
1	Представлена эквивалентная	10
	схема	
	За каждую схему по 5 баллов.	
2	Найдено полное сопротивление	4
	схемы	
	Найдено сопротивление одного	2
	резистора	
3	Указано, что $I_{\mathrm{BC}}=I_{\mathrm{ED}}=0$	2
4	Найдено значение тока через	2
	остальные сопротивления	
	Итого:	20

Задача 5. В середине 20 века СССР и США проводили испытания атомных бомб. Атомная бомба США В-41 (Мк-41)имела заряд был приблизительно эквивалентный 25 мегатоннам в тротиловом эквиваленте. самая мощная атомная бомба (Царь-бомба (АН602), испытанная в СССР, имела энергию взрыва $E_2 = 58$ Мегатонны в тротиловом эквиваленте.

Определите отношение $\frac{R_2}{R_1}$, где R_2 -радиус ударной волны в момент времени t с от бомбы, произведенной СССР, R_1 -от бомбы, произведенной США.

Указания: считать взрыв атомной бомбы точечным, то есть вся энергия Е взрыва выделяется мгновенно, радиус R распространения ударной волны зависит от времени t, энергии взрыва E, плотности ρ атмосферы.

Решение:

Решаем методом размерностей. Радиус вектор зависит от энергии, плотности атмосферы, времени распространения:

$$R = \varphi(E, \rho, t) \tag{36}$$

$$R = const E^{\alpha} \rho^{\beta} t^{\gamma} \quad () \tag{37}$$

Запишем размерности каждой из величин, входящих в формулу (37):

$$[E] = M^2 \cdot K\Gamma \cdot c^{-2}; \quad [\rho] = K\Gamma \cdot M^{-3}; [t] = c; \quad [R] = M$$
 (38)

Из уравнений () и () получаем систему уравнений:

$$1 = 2\alpha - 3\beta \tag{39}$$

$$0 = \alpha + \beta \tag{40}$$

$$0 = -2\alpha + \gamma \tag{41}$$

Получаем

$$\beta = -\frac{1}{5}; \quad \alpha = \frac{1}{5}; \gamma = \frac{z}{5}$$
 (42)

Радиус зависимости распространения ударной волны от атомной бомбы равен:

$$R = const \left(\frac{E}{\rho}\right)^{1/5} t^{2/5} \tag{43}$$

Отношение радиусов за одинаковый отрезок времени от момента взрыва равно:

$$\frac{R_2}{R_1} = \left(\frac{E_2}{E_1}\right)^{1/5} \tag{44}$$

Заряд первой атомной бомбы испытанной СССР равен

$$E_2 = E_1 \left(\frac{R_2}{R}\right)^5 \tag{45}$$

 $E_2 = 58$ Мегатонны в тротиловом эквиваленте. (46)

№	Критерий	Баллы
1	Записана формула 37	4
2	Записаны размерности	4
	каждой из величин, входящих	
	в формулу (37) – по 1 баллу за	
	каждую величину	
4	Составлены уравнения (39),	6
	(40),(41)- по 2 балла за каждое	
5	Получены соотношения (42)- по 1	3
	баллу за каждое	
6	Получены соотношения (43)	2
	Записано соотношение 44	2
	Записана формула для расчета	2
	заряда	
	Поучено значение энергии	2
	Итого	25