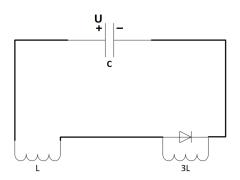

1 Жадина

Конденсатор ёмкостью C был подключен к источнику напряжения U, а по прошествии длительного времени отключен от сети. Определить напряжение на конденсаторе U_1 , после того, как он втянет в себя диэлектрическую пластину с массой m и диэлектрической проницаемостью ε . Коэффициент трения пластины об стенки конденсатора μ , линейный размер конденсатора l, а втягивание происходило плавно, без колебаний.


2 Зависть Теслы

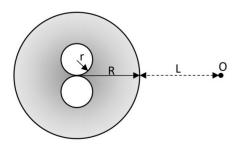
Источник переменного напряжения с пиковым значением ${\bf U}$ подключен через трансформатор с отношением витков $\frac{n_1}{n_2}=5, n_1$ - число витков со стороны источника. Посчитать среднюю мощность, выделяемую на резисторе с сопротивлением ${\bf R}$.

3 Колебательный контур

В начальный момент времени конденсатор заряжен до напряжения U так, как показано на рисунке. Положительный заряд полностью перетекает с левой обкладки конденсатора на правую за время τ . Посчитайте ток в катушке L в момент времени 2τ . Все элементы считать идеальными.

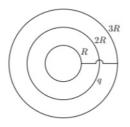
4 Приборы

В схему включены два одинаковых микроамперметра и вольтметра. Показания первого микроамперметра ${f I}_1=200$ мкA, показания вольтметров: ${f U}_1=100$ B, ${f U}_2=2$ B.

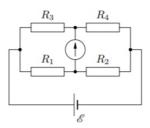

Найти показания второго микроамперметра \mathbf{I}_2 . Сопротивлением проводов пренебречь.

5 Полуполый шар

В шаре радиуса ${\bf R}$ с объёмной плотностью заряда есть две сферические полости радиуса ${\bf r}=\frac{{\bf R}}{2}.$

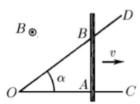

Найти напряжённость электрического поля в точке ${f O},$ удалённой от шара на расстояние ${f L}=2{f R}.$

6 Меня заставили!


Три концентрические проводящие сферы имеют радиусы $\mathbf{R},\ \mathbf{2R},\ \mathbf{3R}$. Заряд средней сферы равен \mathbf{q} . Внутренняя и внешняя сферы не заряженны.

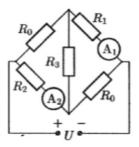
Посчитайте, какой заряд протечет по проволоке, если соеинить наибольшую и наименьшую сферы.

7 Стрелочка не поворачивается

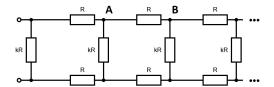

При каком значении сопротивления ${\bf R}_1$ мостик Уинстона будет сбалансированным, т.е. ток через гальванометр будет равен 0. Сопротивления остальных резисторов на схеме ${\bf R}_2, {\bf R}_3$ и ${\bf R}_4$

8 Шпалой по рельсам

Металлический стержень ${\bf AB}$ с удельным сопротивлением ρ движется с постоянной скоростью v, перпендикулярной этому стержню, замыкая два идеальных проводника ${\bf OC}$ и ${\bf OD}$, расположенных под углом α друг к другу. Вся система расположена в постоянном мгнитном поле индукции ${\bf B}$, перпендикулярном плоскости этой системы.


Найти количество теплоты ${f Q}$, которое выделится за время дваижения стержня от точки ${f C}$.

9 Пентаграмма


Электрическая цепь, состоит из пяти идеальных резисторов и двух не менее идеальных амперметров. Сопротивления резисторов \mathbf{R}_0 , \mathbf{R}_1 и \mathbf{R}_2 , тогда так сопротивление резистора \mathbf{R}_3 остается загадкой.

Найти показания амперметра \mathbf{A}_2 , если через амперметр \mathbf{A}_1 течет ток силы \mathbf{I}_1 .

10 Эквивалентное сопротивление

Найти эквивалентное сопротивление между точками $\mathtt A$ и B бесконечной цепочки, изображенной на рисунке, при значениях $\mathbf R$ и $\mathbf k$

