
- **Ф9.1** К перекрестку по двум взаимно перпендикулярным шоссейным дорогам движутся равномерно грузовая и легковая автомашины со скоростями $V_1 = 15 \,\mathrm{m/c}$ и $V_2 = 20 \,\mathrm{m/c}$ соответственно. В некоторый момент времени автомашины находятся от перекрестка на расстояниях $S_1 = 300 \,\mathrm{m}$ и $S_2 = 275 \,\mathrm{m}$. Через какое время T расстояние между автомашинами будет наименьшим?
- **Ф9.2** С высокой башни с интервалом $\tau=1$ с бросают с нулевой начальной скоростью два камня. На каком расстоянии S друг от друга будут находиться камни в тот момент, когда скорость второго камня станет равной $V=30~{\rm m/c}?$

Ускорение свободного падения $g=10~{\rm m/c^2}.$ Силу сопротивления воздуха считайте пренебрежимо малой.

Ф9.3 Камень вылетает из метательной машины со скоростью $V_1=39~{\rm m/c}$ и через $T=4,2~{\rm c}$ попадает в цель. В этот момент скорость камня $V_2=45~{\rm m/c}$. На каком расстоянии L по горизонтали от машины находится цель?

Ускорение свободного падения $g = 10 \text{ м/c}^2$. Силу сопротивления воздуха считайте пренебрежимо малой.

- $\Phi 9.4$ По клину массой M, находящемуся на гладкой горизонтальной плоскости, скользит шайба массой m. Гладкая наклонная плоскость клина составляет с горизонтом угол α . Определите величину P силы, с которой шайба действует на клин. Ускорение свободного падения g.
- **Ф9.5** Стальной кубик плавает в ртути. Поверх ртути наливают воду так, что она только покрывает кубик. Какова высота h слоя воды? Длина ребра кубика b=10 см, плотность стали $\rho_1=7.8$ г/см³, плотность ртути $\rho_2=13.6$ г/см³, плотность воды $\rho_3=1$ г/см³. Примечание. Параллельность грани куба поверхности воды при плавании обеспечивается незначительными внешними усилиями.
- **Ф9.6** В калориметр, содержащий $m_1 = 100$ г льда при $t_1 = 0^\circ$, наливают $m_2 = 150$ г воды при температуре $t_2 = 50^\circ$. Определите установившуюся в калориметре температуру t. Удельная теплоемкость воды $c = 4200~\rm{Дж/(кг\cdot K)}$. Удельная теплота плавления льда $\lambda = 3.3\cdot 10^5~\rm{Дж/кг}$.
- **Ф9.7** Для измерения сопротивления R проводника собрана электрическая цепь (см. схему на рис.). Вольтметр V показывает напряжение $U_V=5$ В. Показание амперметра A равно $I_A=25$ мА. Найдите величину R сопротивления проводника. Внутреннее сопротивление вольтметра $R_V=1,0$ кОм.

