

- $\Phi 11.1$ Тело, свободно падающее без начальной скорости с некоторой высоты, за промежуток времени Δt после начала движения проходит путь в n=5 раз меньший, чем за такой же промежуток времени в конце движения. Найти высоту, с которой падало тело.
- **Ф11.2** Молекулярным водородом заполняют аэростат объёмом $V=300~{\rm M}^3$ при температуре $T=300~{\rm K}$ и давлении $P=10^5~{\rm \Pi a}$. Из баллона в аэростат поступает водород, расход которого составляет $\gamma=25~{\rm r/c}$. Сколько времени займет полное заполнение оболочки аэростата, если в начале в ней не было водорода. Газ считать идеальным.
- **Ф11.3** До напряжения $U_0=100$ В, как видно из вольтамперной характеристики нелинейного элемента, ток равен нулю, а затем линейно растет с увеличением напряжения. При подключении его к батарее с некоторой ЭДС и внутренним сопротивлением r=25 кОм через нелинейный элемент течет ток $I_1=2$ мА, а при подключении его к той же ЭДС последовательно с балластным сопротивлением $R_6=2r$ ток равен $I_2=1$ мА. Чему равна ЭДС батареи?

 $\Phi 11.4$ Конденсатор ёмкости C, заряженный до разности потенциалов U, подключен к катушкам индуктивности L_1 и L_2 через ключ К. Если замкнуть ключ, то через некоторое время конденсатор полностью перезарядится (т. е. напряжение на обкладках конденсатора поменяет знак). Какие заряды q_1 и q_2 протекут через катушки за это время? Омическими сопротивлениями катушек пренебречь.

 $\Phi 11.5$ Предмет расположен на оптической оси тонкой собирающей линзы с фокусным расстоянием F=10 см, а на экране получено его увеличенное изображение. Если предмет передвинуть к линзе на l=5 см, то изображение предмета будет мнимым. При этом размер мнимого изображения остался прежним. Во сколько раз размер изображения предмета больше размера самого предмета?