
Phystech.International, 11 класс

1. Автомобиль, двигаясь равнозамедленно по прямой, преодолел участок подъема со средней скоростью *Param1* м/с, при этом его скорость в конце подъема меньше скорости в начале подъема на *Param2* м/с. Найдите скорость автомобиля в середине участка подъема. Ответ приведите в [м/с].

Param1	25	30	18	26	12
Param2	14	16	15	21	10
Answer:					

2. Мяч брошен под углом к горизонту из точки А. Точка А находится на высоте h равной Param1 м. Расстояние l от точки А бросания до точки В падения мяча на землю равно Param2 м. Найдите минимальную начальную скорость мяча в таком полете. Ответ приведите в [m/c].

Ускорение свободного падения 10 м/c^2 .

Сопротивление воздуха считайте пренебрежимо малым.

Param1	4	6	6	3	8
Param2	14	30	40	10	25
Answer:					

3. Однородный диск катится без проскальзывания по горизонтальной поверхности. Радиус диска *Param1* см, скорость центра диска *Param2* м/с. На диске на расстоянии *Param3* см от центра сидит насекомое массой *Param4* г. Найдите максимальную силу трения, удерживающую насекомое от падения в процессе движения. Ответ приведите в миллиньютонах [мH].

Ускорение свободного падения 10 м/c^2 . Все движения происходят в одной вертикальной плоскости.

Param1	40	30	40	50	30
Param2	1,5	2,0	4	5	3
Param3	10	10	20	25	10
Param4	3	5	4	5	3
Answer:					

4. Вагон массой *Param1* тонн, движущийся по прямолинейному горизонтальному пути, догоняет другой вагон массой *Param2* тонн и сцепляется с ним. В результате абсолютно неупругого столкновения механическая энергия вагонов уменьшается на *Param3* кДж. С какой скоростью сокращалось расстояние между вагонами перед сцепкой? Ответ приведите в [м/с].

Param1	60	40	60	30	25
Param2	80	60	40	30	30
Param3	10	15	10	13	15
Answer:					

5. Идеальный газ находится в закрытом сосуде постоянного объёма. При нагревании на *Param1* К давление газа увеличивается на *Param2* %. Определите абсолютную температуру газа в начальном состоянии. Ответ приведите в кельвинах [K].

Param1	1,0	2,0	1,5	2,0	4,0
Param2	0,4	0,5	0,5	0,25	0,8
Answer:					

6. Теплопроводящий цилиндр, наполненный идеальным газом, лежит на горизонтальном столе. Поршень массой *Param1* кг и площадью *Param2* см² делит объем цилиндра на две равные части. Если цилиндр установить вертикально, то отношение объемов устанавливается равным *Param3*. Найдите давление воздуха в цилиндре в начальном состоянии. Ответ приведите в килопаскалях [кПа].

Поршень скользит в цилиндре без трения. Ускорение свободного падения 10 m/c^2 .

Param1	5,0	8,0	24,0	24,0	15,0
Param2	10,0	30,0	40,0	40,0	30,0
Param3	3,0	1,5	2,0	5,0	1,5
Answer:					

7. В сосуд объемом Param1 дм³, наполненный сухим воздухом при давлении 10^5 Па и температуре 0 0 С, вводят Param2 г воды. Сосуд нагревают до температуры 100 0 С. Найдите давление влажного воздуха в сосуде при этой температуре. Ответ приведите в килопаскалях [кПа]. Воздух и водяной пар считайте идеальными газами.

Давление насыщенного водяного пара при $100~^{\circ}$ С составляет $100~^{\kappa}$ Па, молярная масса воды $18~^{\epsilon}$ Г/моль, универсальная газовая постоянная $8,31~^{\epsilon}$ Дж/(моль-К).

Param1	10,0	5,0	20,0	4,0	15
Param2	2,9	18	3,0	2,6	6,5
Answer:					

8. По трем параллельным пластинам однородно распределены заряды с поверхностной плотностью σ_1 , равной Param1 нКл/м², σ_2 , равной Param2 нКл/м² и σ_3 , равной Param3 нКл/м² соответственно. Найдите разность потенциалов $(\varphi_1 - \varphi_3)$ пластин 1 и 3. Ответ приведите в вольтах [В].

Расстояния между соседними пластинами одинаковы и равны | | Рагам см. Размеры пластин велики по сравнению с расстоянием между ними. Электрическая постоянная $8,85 \cdot 10^{-12} \text{ K} \pi^2/(\text{H} \cdot \text{m}^2)$.

Param1	1,77	-1,77	5,31	-0,177	4,0
Param2	3,54	-3,54	10,62	-0,354	8,0
Param3	-5,31	5,31	-15,93	0,531	-12,0
Param4	1,0	2,0	3,0	5,0	1,0
Answer:					

9. К батарее подключен резистор сопротивлением *Param1* Ом. Напряжение на зажимах батареи *Param2* В. Если к батарее подключить дополнительно второй такой же резистор, то напряжение на зажимах станет равным *Param3* В. Найдите внутреннее сопротивление батареи. Ответ приведите в омах [Ом].

Param1	16,0	12,0	4,0	12,0	15,0
Param2	10,0	6,0	8,0	14,0	15,0
Param3	7,0	5,0	5,0	8,0	9,0
Answer:					

10. На горизонтальной пластине лежит груз. Пластина, оставаясь горизонтальной, совершает гармонические колебания по вертикали с амплитудой *Param1* см. Силы, с которыми груз действует на платформу в точках остановки, отличаются по величине в *Param2* раза. Найдите амплитуду колебаний скорости платформы с грузом. Ответ приведите в [м/с].

Ускорение свободного падения 10 м/c^2 .

Param1	8,0	6,0	15,0	16,0	17,0
Param2	4,0	2,0	1,5	4,5	2,5
Answer:					