Межрегиональная предметная олимпиада Казанского федерального университета по предмету «Химия» (Решения)

2013-2014 учебный год

11 класс

I. Задача про «непростые» соединения – решение.

Формулы и названия веществ:

A – KNCS, роданид калия;

B - S, cepa;

 $C - FeCl_3$, хлорид железа(III);

 \mathbf{D} – Fe(NCS)₃, роданид железа(III);

E - KF, фторид калия;

 $\mathbf{F} - \mathbf{K}_3[\text{FeF}_6]$, гексафтороферрат(III) калия;

G – FeCl₂, хлорид железа(II);

 $H - Fe(NCS)_2$, роданид железа(II);

 $I - CuCl_2$, хлорид меди(II);

 $J - Cu(NCS)_2$, роданид меди(II);

 \mathbf{K} – CuCl(OH), гидроксохлорид меди(II);

 $L - [Cu(NH_3)_4]Cl_2$, хлорид тетраамминмеди(II).

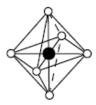
Уравнения реакций:

 $3KNCS + FeCl_3 = Fe(NCS)_3 + 3KCl$

 $Fe(NCS)_3 + 6KF = K_3[FeF_6] + 3KNCS$

 $CuCl_2 + 2KNCS = Cu(NCS)_2 \downarrow + 2KCl$

 $2Cu(NCS)_2 = 2CuNCS + (NCS)_2$


 $CuCl_2 + NH_4OH(pa36.) = CuCl(OH) \downarrow + NH_4Cl$

 $CuCl_2 + 4NH_3$ (конц.) = $[Cu(NH_3)_4]Cl_2$

Структуры анионов А и F:

$$\left[: \overset{\cdot}{N} = \overset{\cdot}{C} \stackrel{1.65}{=} \overset{\cdot}{S} : \right]^{-} = \left[\overset{\cdot}{N} = \overset{\cdot}{C} - \overset{\cdot}{S} \cdot \right]^{-}$$

(приемлема любая из двух изомерных структур)

 $[{\rm FeF_6}]^{3-}$ - октаэдр

II. Задача «о пропаганде» в аренах – решение.

A — 1-метил-2-бромбензол, B — 1-метил-4-бромбензол, C — (бромметил)бензол.

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline & Br_2, AlBr_3 & \\ \hline & & \\ &$$

2. При окислении пропилбензола перманганатом калия в кислой среде образуется бензойная кислота.

A
$$\overrightarrow{CH_3}$$
 B $\overrightarrow{CH_3}$ C $\overrightarrow{CH_2Br}$

Br

 $|O|$ $|O|$

3. AlCl₃, AlBr₃, FeCl₃, BF₃ входят в группу катализаторов, называемых кислотами Льюиса.

4

1,4-диметил-2,3-дихлобензол

III. Задача про аэробное и анаэробное дыхание бактерий - решение.

 $A - NO_3^-$, нитрат-ион;

 $\mathbf{B}-\mathrm{HNO}_3$, азотная кислота

 $\mathbf{C} - \mathrm{NO}_2^-$, нитрит-ион

 $\mathbf{D} - \mathrm{HNO}_2$, азотистая кислота

 $\mathbf{E} - \mathbf{NH_4}^+$ – катион аммония

 $F - NH_3$, аммиак

G - NO, оксид азота(II), моноксид азота

 $I - N_2O$, оксид азота(I), закись азота, «веселящий газ»

 $K - N_2$, азот

X - N азот

i.
$$NO_3^- + 2\bar{e} + 2H^+ \rightarrow NO_2^- + H_2O$$

ii. $NO_2^- + 6\bar{e} + 7H^+ \rightarrow NH_3 + 2H_2O$
iii. $NO_2^- + \bar{e} + 2H^+ \rightarrow NO + H_2O$
iv. $2NO + 2\bar{e} + 2H^+ \rightarrow N_2O + H_2O$
v. $N_2O + 2\bar{e} + 2H^+ \rightarrow N_2 + H_2O$
vi. $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$
vii. $2NH_3 + 3O_2 \rightarrow 2NO_2^- + 2H^+ + 2H_2O$
viii. $2NO_2^- + O_2 \rightarrow 2NO_3^-$

IV. Задача про получение газов – решение.

Вариантов решения задачи немало, проиллюстрируем на примере таких дополнительных веществ, как азотная кислота и цианид аммония.

$N_{\underline{0}}$	Газ	Реакция (реакции)
1.	Cl ₂	$16HCl + 2KMnO_4 = 5Cl_2 + 2MnCl_2 + 8H_2O + 2KCl$
2.	H_2	$2HC1 + Zn = \mathbf{H_2} + ZnCl_2$
3.	HCN	$HC1 + NH_4CN = HCN + NH_4C1$
4.	H_2S	Zn + S = ZnS
		ZnS + 2HCl = H2S + ZnCl2
5.	SO_2	$3S + 4KMnO_4 = 3SO_2 + 4MnO_2 + 2K_2O$
6.	O_2	$2KMnO_4 = K_2MnO_4 + MnO_2 + O_2$
7.	NO	$2Cu + 6HNO_3 = NO_2 + NO + 2Cu(NO_3)_2 + 3H_2O$
		$2NO_2 + 2NO + 2KOH = KNO_3 + KNO_2 + 2NO + H_2O$
8.	NO_2	$2NO (из п.7) + O_2 = 2NO_2$
9.	NH_3	$NH_4CN + KOH = NH_3 + KCN + H_2O$
10	N ₂ O	$NH_3 (из п. 9) + HNO_3 = NH_4NO_3$
		$NH_4NO_3 = N_2O + 2H_2O$
11	NOC1	$2NO(из п.7) + Cl_2(из п. 2) = 2NOCl$

Примечание — NO и NO_2 можно получить на бумаге и просто с помощью реакции азотной кислоты различной концентрации с медью (и можно засчитывать при проверке), но, поскольку это все же «бумажная химия», в решении приведены процессы, позволяющие получить каждый из этих газообразных оксидов индивидуально.

V. Задача про синтез с участием элементоорганических веществ – решение.

Состав вещества ${\bf B}$ описывается формулой $C_6H_{15}MgBrOQ$, по молярной массе вещества ${\bf E}$ и процентному содержанию в нем углерода и водорода приходим к выводу, что элемент Q – кремний, и молекулярные формулы ${\bf B}-C_6H_{15}MgBrOSi$, ${\bf E}-C_3H_{10}SiO$. Расшифровка цепочки:

$$HO \longrightarrow Br + Cl \longrightarrow Si \longrightarrow CH_3 \xrightarrow{NEt_3} \xrightarrow{NEt_3} \xrightarrow{NHEt_3^+Cl^-} GH_3C \xrightarrow{N} GH_3C$$

Роль триметилхлорсилана (реагента X) в данном процессе – роль защитной группы, которая блокирует одну из групп молекулы (в данном случае спиртовую), чтобы она не вступала в реакции с реагентами, которыми обрабатываются другие (другая) функциональные группы. В данном случае незащищенная группа –ОН мешает протеканию реакции образования реагента Гриньяра (вещества B), который разрушается в присутствии доноров протонов – спиртов, воды и кислот.