Межрегиональная предметная олимпиада КФУ по предмету «Физика» Очный тур 2015-2016 учебный год

9 класс

Задача 1. (20 баллов)

Длинную тонкостенную трубку радиусом 0,5 см, закрытую снизу однородной круглой пластмассовой пластиной, аккуратно, придерживая пластину, погружают в воду. Толщина пластины равна 1 см, её радиус — 2,5 см. Найти минимальную глубину h (см. рис. 1), при которой пластина, если её отпустить, не оторвётся от трубки. Плотность воды $\rho_0 = 1000 \text{ кг/м}^3$, плотность пластмассы $\rho = 1600 \text{ кг/м}^3$. Вода между трубкой и пластиной не проникает.

h

Рис. 1.

Задача 2. (20 баллов)

Вокруг далёкой звезды Тау Кита вращаются по круговым орбитам две планеты — Морж и Тюлень, причём радиус орбиты Тюленя в четыре раза больше радиуса орбиты Моржа. В некоторый момент времени наступает сизи́гия — звезда и обе её планеты находятся на одной

прямой (Морж находится между звездой и Тюленем). Считая, что планеты движутся в одну сторону, найдите промежуток времени до следующей сизигии. Время одного оборота Моржа вокруг звезды составляет 350 земных суток.

Примечание. Время обращения планеты вокруг звезды пропорционально $R^{3/2}$, где R — радиус её орбиты (третий закон Кеплера).

Задача 3. (20 баллов)

Девятиклассник Петя собрал цепь, изображённую на рис. 2 (зачем он это сделал, он не сказал), и подсоединил её к источнику напряжением U=40~B. Сопротивления всех резисторов указаны на схеме. Перерисовать схему и изобразить полярность приборов, при которой они показывают положительное значение силы тока. Найти показания амперметров A_2 , A_3 и сопротивление R, если амперметр A_1 показывает 200 мA. Сопротивления амперметров пренебрежимо малы.

Рис. 2.

Задача 4. (20 баллов)

Тело, брошенное вертикально вверх с начальной скоростью 10 м/с, до своего падения на землю прошло путь 40 м. На

какой высоте первоначально находилось тело? Ускорение свободного падения принять равным 10 м/c^2 .

Задача 5. (20 баллов)

У Пети имеется стальной электрический чайник массой 600 г с регулятором силы тока в цепи нагревателя. Петя налил в чайник 1,5 л воды при температуре 20 °С и включил его в сеть. После выключения чайника через некоторое время t объём воды в чайнике оказался равным 1,36 л. Во второй раз Петя повторил опыт с тем же количеством воды и той же начальной температурой, что и в первом случае, но увеличив силу тока в нагревателе в 1,5 раза. Какой объём воды останется в чайнике через время t? Теплообменом с окружающей средой пренебречь. Температуры чайника и его содержимого в течение всего эксперимента совпадают. Сопротивление нагревательной спирали не меняется. Теплоём-кость стали равна 500 Дж/(кг \cdot °С), теплоёмкость воды — 4200 Дж/(кг \cdot °С), плотность воды — 1000 кг/м³, удельная теплота парообразования воды — 2,3 МДж/кг.