2 этап (заключительный)

Xимия − 10 − 11 классы

Ключи к заданиям олимпиады (решения)

НЕОРГАНИЧЕСКАЯ ХИМИЯ

1.

- 10. Негашеная известь применяется в производстве стройматериалов, получение: $CaCO_3 \xrightarrow{t^0} CaO + CO_2$. Гашеная известь применяется для строительных и ремонтных работ (побелка): $CaO + H_2O = Ca(OH)_2$. Хлорная известь простейший отбеливатель («белизна»), а также дезинфицирующее средство для уборки помещений: $Ca(OH)_2 + Cl_2 = CaCl(ClO) + H_2O$. Гипс (алебастр) также используется в строительстве и при ремонтах (вяжущий материал): $CaCO_3 + H_2SO_4 + H_2O = CaSO_4 \cdot 2H_2O + CO_2$. Карбид кальция применяется для производства ацетилена для газосварочных работ: $CaCO_3 + 4C \xrightarrow{t^0} CaC_2 + 3CO$ или $CaO + 3C \xrightarrow{t^0} CaC_2 + CO$.

Система оценивания:

1. Формулы и номенклатурные названия соединений	$(1+1) 6. \times 6 = 12 6.$
Разновидности кальцита – за любую одну или за обе вместе	0,5 б.
2. Уравнения реакций	$1 6. \times 5 = 5 6.$
Области применения	$0.5 6. \times 5 = 2.5 6.$
Всего	20 б.

- 2. Судя по тому, что при приливании НС1 к фильтрату снова образовался осадок, щелочь была в избытке, иначе осадка бы не было.
 - 9. Уравнения возможных реакций: $ZnC1_2 + 2NaOH = Zn(OH)_2 \downarrow + 2NaCl$, $Zn(OH)_2 + 2NaOH = Na_2[Zn(OH)_4]$, $Zn(OH)_2 \xrightarrow{\ell^0} ZnO + H_2O$, $Na_2[Zn(OH)_4] + 2HCl = 2NaCl + Zn(OH)_2 \downarrow + 2H_2O$, $Zn(OH)_2 + 2HCl = ZnC1_2 + 2H_2O$.
 - 10. При прокаливании осадка образовалось 2,44/81,3 = 0,03 моль ZnO. Следовательно, при приливании NaOH выпало в осадок 0,03 моль Zn(OH)₂. Для осаждения такого количества гидроксида цинка по первому уравнению достаточно 0,06 моля гидроксида натрия, что соответствует 0,06/1 = 0,06 л или 60 мл 1 М раствора. Но этот ответ не полностью удовлетворяет условию (см. п. 1). Исходного ZnCl₂ было 6,82/136,3 = 0,05 моль. Из него могло образоваться 0,05 моль Zn(OH)₂, значит, 0,05 0,03 = 0,02 моль Zn(OH)₂ растворилось снова, образовав 0,02 моль комплексной соли. Таким образом, всего щелочи было истрачено 0,05*2 + 0,02*2 = 0,14 моля, а объем ее 1 М раствора составил 140 мл. При прокаливании второго осадка было получено 0,813/81,3 = 0,01 моль ZnO, следовательно во втором осадке было 0,01 моль Zn(OH)₂. Далее возможны два варианта:
 - а) Кислоты недостаточно для полного осаждения $Zn(OH)_2$ из фильтрата (в котором содержатся 0,02 моля соли и, следовательно, из которого могут быть осаждены 0,02 моля $Zn(OH)_2$).

В этом случае для осаждения 0,01 моль $Zn(OH)_2$ необходимо $0,01\cdot 2=0,02$ моль HC1 (см. уравнение), что соответствует 20 мл 1 M раствора.

б) Кислота в избытке, идет частичное растворение осадка и из 0.02 моль $Zn(OH)_2$ остается 0.01 моль. Тогда на полное осаждение 0.02 моль $Zn(OH)_2$ необходимо 0.02*2 = 0.04 моль HC1 и на растворение (0.02-0.01 = 0.01) 0.01 моль $Zn(OH)_2$ требуется 0.01*2 = 0.02 моль HC1. Всего в этом случае необходимо 0.04+0.02 = 0.06 моль HC1 или 60 мл 1 M раствора.

Система оценивания:

- 1. Уравнения реакций
 1 б. × 5 = 5 б.

 2. Расчет объема щелочи (если 60 мл, то 3 б)
 5 б.

 Расчет объема кислоты за каждый случай по 5 б
 5 б. × 2 = 10 б.

 Всего
 20 б.
- 3.
- 13. Уравнения реакций: $(NH_4)_2Cr_2O_7 \xrightarrow{t} N_2 + Cr_2O_3 + 4H_2O;$

$$2(NH_4)_2CrO_4 \xrightarrow{t} N_2 + Cr_2O_3 + 2NH_3 + 5H_2O.$$

- 14. Зеленый порошок оксид хрома. Его получилось 2,66/152 = 0,0175 моля. Массу исходной смеси можно рассчитать даже без расчета ее состава. Масса хрома в оксиде составляет 2*0,175*52 = 1,82 г, причем это 37,92 масс. % от массы исходной смеси. Отсюда ее масса 1,82/0,3792 = 4,80 г. Мольное соотношение компонентов смеси найдем, составив систему уравнений. Пусть х число молей (NH₄)₂Cr₂O₇, а у (NH₄)₂CrO₄, тогда: (104x + 52y)/(252x + 152y) = 0,3792; или, уже зная массу смеси, 252x + 152y = 4,8; x + 0,5y = 0,0175. Отсюда x = 0,01; y = 0,015, y/x = 1,5.
- 15. Если температура была выше 100° С, то вода тоже находилась в форме газа. В этом случае общее количество газообразных продуктов v = 0.01*5 + 0.015*8/2 = 0.11 моль. Молярный объем газа при температуре измерений и P=1 атм составлял V/v = 3.817/0.11 = 34.7 л/моль, а при н.у. (273 К и P=1 атм) он составляет 22.4 л/моль. Исходя из закона теплового расширения газов при постоянном давлении Гей-Люссака (V/T = const при P = const), получаем $V/T = V_H/T_H$ или 22.4/273 = 34.7/T, откуда T = 423K (150° C). Или, из уравнения Менделеева-Клапейрона $T = PV/vR = (101.325 \, \text{кПа*3.817л})/(0.11 \, \text{моль*8.31Дж/моль·K}) = 423$ K. Если бы вода при температуре измерений не была газом, получим молярный объем 3.87/(0.01*1 + 0.015*3/2) = 119.1 л/моль и $T = (1 \, \text{атм*3.817л})/(0.0325 \, \text{моль*0.082Дж/моль·K}) = 1432$ K (1159° C), что не отвечает истине.

Система оценивания:

1. Уравнения реакций	$2 6. \times 2 = 4 6.$
2. Масса смеси	4 б.
Мольное соотношение	4 б.
3. Молярный объем газов (34,7 л/моль)	4 б.
Температура (423 К или 150°С)	
Если расчет проведен без учета воды, то по 26 за объем и температ	
Всего	20 б.

ОРГАНИЧЕСКАЯ ХИМИЯ

4.

1. Одноосновная карбоновая кислота, которая образует всего два структурных изомера, должна содержать в своем составе четыре атома углерода (один атом С входит в состав карбоксильной группы, остальные три — в состав углеводородного радикала). Поскольку эта кислота является предельной, ее формулу можно записать в виде C_3H_7COOH . Кислоте такого состава соответствует два структурных изомера:

н-бутановая кислота (масляная кислота)

2-метилпропановая кислота (изомасляная кислота)

2. Приведем некоторые примеры реакций, характеризующих химические свойства одноосновных предельных карбоновых кислот.

а) кислотные свойства (взаимодействие с металлами, щелочами, основными оксидами и т.д.):

 $2C_3H_7COOH + 2Na \rightarrow 2C_3H_7COONa + H_2\uparrow$:

названия: бутират или бутаноат (или изобутират) натрия; водород

 $C_3H_7COOH + NaOH \rightarrow C_3H_7COONa + H_2O;$

названия: бутират (или изобутират) натрия; вода

 $2C_3H_7COOH + CaO \rightarrow (C_3H_7COO)_2Ca + H_2O.$

названия: бутират (или изобутират) кальция; вода

б) образование сложных эфиров (реакция этерификации):

$$C_3H_7COOH + C_2H_5OH \xrightarrow{t^\circ, H_2SO_4} C_3H_7COOC_2H_5 + H_2O.$$
 названия: этиловый эфир масляной кислоты (этилбутират); вода

в) галогенирование по α -углеродному атому (реакция Геля-Фольгарда-Зелинского):

$$C_3H_7COOH + Br_2 \xrightarrow{P_{Kpach.}} CH_3CH_2CHBrCOOH + HBr.$$

названия: 2-бромбутановая кислота; бромоводород

г) образование хлорангидридов (взаимодействие с SOCl₂, PCl₃, PCl₅):

 $C_3H_7COOH + SOCl_2 \rightarrow C_3H_7COCl + 2HCl + SO_2$.

названия: хлорангидрид бугановой кислоты (бугирацилхлорид); хлороводород; оксид серы(IV) $3C_3H_7COOH + PCl_3 \rightarrow 3C_3H_7COCl + H_3PO_3$.

названия: хлорангидрид бутановой кислоты (бутирацилхлорид); фосфористая кислота д) горение:

 $C_3H_7COOH + 5O_2 \rightarrow 4CO_2 + 4H_2O$.

названия: оксид углерода(IV); вода

- 3. Возможные способы получения масляной кислоты из соединений различных классов приведены ниже.
- а) действием сильных минеральных кислот на соответствующую соль (например, бутират

$$2C_3H_7COONa + H_2SO_{4 \text{ конц.}} \xrightarrow{t^\circ} 2C_3H_7COOH + Na_2SO_4.$$

названия: бутират натрия; серная кислота

б) окисление спиртов, альдегидов (кетонов), алкенов (действием сильных окислителей в кислой среде при нагревании), например:

$$5C_4H_9OH + 4KMnO_4 + 6H_2SO_4 \xrightarrow{t^{\circ}} 5C_3H_7COOH + 4MnSO_4 + 2K_2SO_4 + 11H_2O.$$

названия: н-бутанол (н-бутиловый спирт); перманганат калия; серная кислота

в) гидролиз 1,1,1-трихлорпроизводного ($C_3H_7CCl_3$), хлорангидрида, амида, нитрила, сложных эфиров масляной кислоты, например:

$$C_3H_7CCl_3 + 3NaOH \xrightarrow{t^\circ} C_3H_7COOH + 3NaCl + H_2O.$$

названия: 1,1,1-трихлорпропан; гидроксид натрия

$(C_3H_7Br + Mg \xrightarrow{t^\circ, 9\phi up} C_3H_7MgBr)$	
$C_3H_7MgBr + CO_2 \rightarrow C_3H_7COOMgBr$; $C_3H_7COOMgBr + HBr -$	\rightarrow C ₃ H ₇ COOH + MgBr ₂ .
названия: н-пропилмагнийбромид; углекислый газ	<u> </u>
Система оценивания:	
1. Структурные формулы	$0.56 \times 2 = 1.6$
Названия изомеров	
11 изомеров 2. Пять уравнений реакций	
Названия образующихся продуктов	
(если не указано название какого-либо "несложного" продукта	(например водород вода и m д)
баллы можно не снимать)	(manpunep, occopoo, occu u m.c.)
3. Уравнения реакций четырех способов получения	$1 6 \times 4 = 4 6$
Названия исходных соединений	
(если не указано название какого-либо "несложного" реагента	
и т.д.) баллы можно не снимать)	(
Всего	20 б.
5. Средние молярные массы смесей до и после реакции составл $0.982 \text{ г/л} \cdot 22.4 \text{ л/моль} = 22 \text{ г/моль и } 11.25 \cdot 2 \text{ г/моль} = 22.5 \text{ г/м}$ Рассчитаем состав исходной смеси, обозначив за х мольную смеси), тогда $(1-x)$ – мольная доля C_2H_4 : $16x + 28(1-x) = 22$, откуда $x = 0.5$.	моль.
Гидрированию подвергается только этилен: $C_2H_4 + H_2$ — P_t гидрировании средняя молярная масса должна составить $0.5 \cdot 16$ г/моль $+ 0.5 \cdot 30$ г/моль $= 23$ г/моль. Поскольку в полученной смеси эта величина меньше, смесь компонент, кроме метана и этана. Это возможно в двух слученедостатке H_2 (случай 2). C лучай 1. При избытке мольные доли метана и этана равны. $16y + 30y + 2(1-2y) = 22.5$, откуда $y = 0.488$. Состав смеси после реакции: $CH_4 - 48.8$, $C_2H_6 - 48.8$, $H_2 - 2.4$ Найдем состав смеси в масс. %: $\omega(CH_4) = 16 \cdot 0.488 / 22.5 = 0.347$ или 34.7 %; $\omega(C_2H_6) = 30 \cdot 0.00$ $\omega(H_2) = 2 \cdot 0.024 / 22.5 = 2.13 \cdot 10^{-3}$ или 0.213 %. C лучай 2. При недостатке водорода остается этилен, причем прежней, а сумма мольных долей $C_2H_4(z)$ и C_2H_6 составит $0.50.5 \cdot 16 + z \cdot 28 + (0.5 \cdot z) \cdot 30 = 22.5$, откуда $z = 0.25$. Состав смеси при этом: $CH_4 - 50.0$, $C_2H_4 - 25.0$, $C_2H_6 - 25.0$ м C 0 состав смеси в масс. %: $\omega(CH_4) = 16 \cdot 0.5 / 22.5 = 0.356$ или 35.6 %; $\omega(C_2H_4) = 28 \cdot 0.25$ $\omega(C_2H_6) = 30 \cdot 0.25 / 22.5 = 0.333$ или 33.3 %.	должна содержать еще один аях — при избытке (<i>случай 1</i>) и Обозначим их за у: 4 мольных или объемных %. 9,488 / 22,5 = 0,651 или 65,1 %; сумма молей газов остается 5: иольных или объемных %.
Система оценивания: Расчет средних молярных масс смесей до и после реакции Уравнение реакции гидрирования Нахождение состава исходной смеси Вывод о содержании в конечной смеси третьего компонента	
Качественный состав смеси (случай 1)	
Расчет объемных (мольных) долей компонентов (случай 1)	$1 0. \times 3 = 3 0.$

г) использование магнийорганических соединений (реактива Гриньяра), например:

Расчет массовых долей компонентов (случай 1) 1 б. \times 3 = 3 б. Качественный состав смеси (случай 2) 0,5 б. \times 3 = 1,5 б. Расчет объемных (мольных) долей компонентов (случай 2) 1 б. \times 3 = 3 б. Расчет массовых долей компонентов (случай 2) 1 б. \times 3 = 3 б. Всего 20 б.

6.

1. Обозначим неизвестные алкены в виде C_xH_{2x} и C_yH_{2y} . Запишем уравнения реакций гидратации этих алкенов и их взаимодействия с бромоводородом:

$$C_xH_{2x} + H_2O \xrightarrow{H^+} C_xH_{2x+2}O$$
 и $C_yH_{2y} + H_2O \xrightarrow{H^+} C_yH_{2y+2}O$; $C_xH_{2x} + HBr \to C_xH_{2x+1}Br$ и $C_yH_{2y} + HBr \to C_yH_{2y+1}Br$.

Молярные массы исходных алкенов и продуктов реакции равны:

$$M(C_xH_{2x}) = 14x;$$
 $M(C_xH_{2x+2}O) = 14x + 18;$ $M(C_xH_{2x+1}Br) = 14x + 81.$

$$M(C_yH_{2y}) = 14y; \quad M(C_yH_{2y+2}O) = 14y + 18; \quad M(C_yH_{2y+1}Br) = 14y + 81.$$

Из условия задачи известно, что $M(C_yH_{2y+2}O)=2,217\cdot M(C_xH_{2x+2}O)$: 14y+18=2,217(14x+18). Также известно, что молярная масса одного из продуктов присоединения HBr составляет 66,06 % от молярной массы другого, т.е. $M(C_xH_{2x+1}Br)=0,6606\cdot M(C_yH_{2y+1}Br)$. Составим систему из двух уравнений: 14y+18=2,217(14x+18) и 14x+81=0,6606(14y+81). Решая эту систему, получаем x=2; y=6. Таким образом, первый алкен – этилен (C_2H_4) , а второй –один из неразветвленных изомеров гексена (C_6H_{12}) . Поскольку присоединение газообразного бромоводорода к смеси алкенов дает два продукта независимо от наличия в системе органического пероксида, при гидратации этой смеси образовалось только два соединения, можно сделать вывод, что второй алкен имеет симметричное строение, т.е. гексен-3.

2-3. Рассчитаем количественный состав смеси алкенов. Пусть в смеси было a молей этилена и b молей гексена-3. Тогда, учитывая, что при взаимодействии 11,2 г смеси с избытком НВг получилось 38,3 г продуктов, составим уравнения: 28a + 84b = 11,2 и 109a + 165b = 38,3. Решая систему, находим a = 0,302 моля (8,46 г; 75,5 мас. %); $b = 3,27 \cdot 10^{-2}$ моля (2,75 г; 24,5 мас. %).

Запишем уравнения реакций взаимодействия этилена и гексена-3 с избытком нейтрального раствора перманганата калия:

$$3H_2C=CH_2+2KMnO_4+4H_2O \rightarrow 3H_2C(OH)-CH_2(OH)+2MnO_2+2KOH;$$
 этиленгликоль (этандиол-1,2)

$$3C_2H_5$$
–HC=CH– C_2H_5 + 2KMnO₄ + 4H₂O \rightarrow 3C₂H₅–HC(OH)–CH(OH)–C₂H₅ + 2MnO₂ + 2KOH. гександиол-3,4

Рассчитаем количество каждого из алкенов в 5,6 г исходной смеси: $\nu(C_2H_4)=5,6\cdot0,755\,/\,28=0,15$ моля; $\nu(C_6H_{12})=5,6\cdot0,245\,/\,84=1,6\cdot10^{-2}$ моля. Количество MnO₂, полученное при окислении: $\nu(\text{MnO}_2)=(0,15+1,6\cdot10^{-2})\cdot2\,/\,3=0,11$ моля, его масса $0,11\cdot87=9,6$ г.

Запишем уравнения остальных реакций:

$$H_2C=CH_2+H_2O \xrightarrow{H^+} H_3C-CH_2(OH);$$

этанол (этиловый спирт)

$$C_2H_5$$
-HC=CH- C_2H_5 + $H_2O \xrightarrow{H^+} C_2H_5$ - H_2C -CH(OH)- C_2H_5 . гексанол-3

 $H_2C=CH_2 + HBr \rightarrow H_3C-CH_2(Br);$

этилбромид (бромэтан)

$$C_2H_5-HC=CH-C_2H_5+HBr \rightarrow C_2H_5-H_2C-CH(Br)-C_2H_5.$$

3-бромгексан

Система оценивания:	1.5
1. Установление качественного состава (этилен+гексен)	
Установление строения гексена (гексен-3) Установление количественного состава смеси 	
2. 3 становление количественного состава смеси Расчет массы MnO ₂	
3. Уравнения реакций (6 реакций)	1 × 6 = 6.6
Названия образующихся орг. продуктов (6 названий)	
Всего	
РИМИХ РАДИЗО	
7.	
9. a) Находим количество веществ K ₂ CO ₃ и HCl:	
$\nu(\mathrm{K}_2\mathrm{CO}_3) = \mathrm{C}(\mathrm{K}_2\mathrm{CO}_3) \cdot \mathrm{V}_{\mathrm{p-pa}}(\mathrm{K}_2\mathrm{CO}_3) = 0,03 \cdot 1,0 = 0,03$ моль, ана. 0,07 моль.	логично находим, что $\nu(HCl)$ =
Процесс, протекающий при сливании этих растворов (HCl в и $K_2CO_3 + 2HCl = 2KCl + CO_2 \uparrow + H_2O$	избытке):
Нагревание раствора приводит к удалению СО2.	
Ионы в полученном растворе: K^+ , H^+ , Cl^- .	
Из уравнения реакции и количеств реагентов находим v(HCl)	$\nu_{\text{изб.}} = 0.01$ моль, $\nu(\text{KCl}) = 0.06$
моль. Из этого следует что, $v(H^+) = 0.01$ моль, $v(K^+) = 0.06$ мо	оль, $\nu(Cl^-) = 0.07$ моль.
Рассчитываем количество ионов (в штуках): $N(X) = v(X) \cdot N_A$	
$N(H^{+}) = 6.02 \cdot 10^{21} \text{ штук}, N(K^{+}) = 3.61 \cdot 10^{22} \text{ штук}, N(Cl^{-}) = 4.21 \cdot 10^{22} \text{ штук}$	10^{22} штук.
б) $\nu(K_2CO_3) = 0.03$ моль, $\nu(AlCl_3) = 0.01$ моль.	
$3K_2CO_3 + AlCl_3 + 3H_2O = 3KHCO_3 + Al(OH)_3 \downarrow + 3KCl$	
$2KHCO_3 = K_2CO_3 + CO_2 \uparrow + H_2O$ (при нагревании раствора)	
Ионы в полученном растворе: K^+ , CO_3^{2-} , Cl^- .	22
$N(K^{+}) = 3.61 \cdot 10^{22} \text{ штук}, N(CO_{3}^{2-}) = 9.03 \cdot 10^{21} \text{ штук}, N(Cl^{-}) = 1.8$	31·10 ²² штук.
в) $\nu(K_2CO_3) = 0.03$ моль, $\nu(CaCl_2) = 0.02$ моль.	
$K_2CO_3 + CaCl_2 = CaCO_3 \downarrow + 2KCl$	
Ионы в полученном растворе: K^+ , CO_3^{2-} , CI^- .	22
$N(K^{+}) = 3.61 \cdot 10^{22} \text{ штук}, N(CO_{3}^{2-}) = 6.02 \cdot 10^{21} \text{ штук}, N(Cl^{-}) = 1.2$	2
10. Найдем рН раствора, полученного сливанием растворов К	
$C(H^{+}) = v(HCl)_{\mu_{3}6.}/(V_{p-pa}(K_{2}CO_{3}) + V_{p-pa}(HCl)) = 5 \cdot 10^{-3} M, pH =$	$-\lg C(H') = 2,3.$
Система оценивания:	
1. Уравнения реакций	$2 \ 6. \times 3 = 6 \ 6.$
Качественный состав (по 1 б за верный, по $0,5$ б – c ошибками)	$1 \text{ 6. } \times 3 = 3 \text{ 6.}$
Количество ионов в штуках <u></u>	1 6. \times 3 \times 3 = 9 6.
2. Правильно рассчитанный pH (если без учета разбавления, то 1	<i>δ</i>) 2 <i>δ</i> .
Всего	20 б.
(Если указаны H и OH во всех растворах, то «призовой» l б., а е	если для случая а) посчитано

(Если указаны H^+ и OH во всех растворах, то «призовой» 1 б., а если для случая а) посчитано количество OH через K_W , то еще 1б.).

8.

9. Молярная теплота растворения — это количество тепла, выделяющееся при растворении 1 моля вещества. Количество безводного $MgCl_2$ в 9,52 г составляет 9,52/95,2 = 0,1 моля, следовательно при растворении 1 моля безводного $MgCl_2$ выделится в 10 раз больше тепла. Таким образом, молярная теплота растворения $MgCl_2$ составит 140 кДж/моль. Аналогично молярная теплота растворения $MgCl_2 \cdot 6H_2O$ получается 14/24,3:9,52/203,2=12,3 кДж/моль.

10. Запишем термохимические уравнения для процессов растворения солей и для требуемого процесса:

$$MgCl_{2(K)} + 6H_2O = MgCl_2 \cdot 6H_2O_{(K)}$$

Видно, что требуемый процесс – это просто разность между первым и вторым, а значит, и теплота этого процесса есть разность между вычисленными нами теплотами. То есть X =140 - 12,3 = 127,7 кДж/моль. Тогда при образовании 2,03 г или 2,03/203,2 = 0,01 моль $MgCl_2·6H_2O$ из безводной соли выделится 0.01*127.7 = 1.28 кДж тепла.

Система оценивания

1. Расчет теплот растворения	$5 6. \times 2 = 10 6.$
2. Расчет молярной теплоты образования MgCl ₂ ·6H ₂ O из безво	
нет, но есть уравнения и логика расчета, то баллы ставятся)	<u>5 δ.</u>
Расчет количества тепла	<u>5</u> δ.
Всего	20 б.

9.

11. Паша: катод(-):
$$2H^+ + 2$$
 $e = H_2 \uparrow$ или $2 H_2 O + 2$ $e = H_2 \uparrow + 2OH^-$; анод(+): $SO_3^{2-} + H_2 O - 2$ $e = SO_4^{2-} + 2H^+$. Суммарно: $K_2 SO_3 + H_2 O = K_2 SO_4 + H_2 \uparrow$ (1). Саша: катод(-): $2H^+ + 2$ $e = H_2 \uparrow$ или $2 H_2 O + 2$ $e = H_2 \uparrow + 2OH^-$; анод(+): $S^{2-} - 2$ $e = S \downarrow$. Суммарно: $K_2 S + 2H_2 O = 2KOH + S \downarrow + H_2 \uparrow$ (2). Маша: катод(-): $2H^+ + 2$ $e = H_2 \uparrow$ или $2 H_2 O + 2$ $e = H_2 \uparrow + 2OH^-$; анод(+): $4OH^- - 4$ $e = 2H_2 O + O_2 \uparrow$ или $2 H_2 O - 4$ $e = 4H^+ + O_2 \uparrow$. Суммарно: $2H_2 O = 2H_2 \uparrow + O_2 \uparrow$ (3).

У каждого школьника в растворе содержалось по $0.01*1.0*1.0*10^3 = 10$ г соли. Количество растворенного вещества составляло: $K_2SO_3 - 10/158 = 6{,}33*10^{-2}$ моля; $K_2S - 10/110 = 9{,}09*10^{-2}$ моля; $\hat{K}_2SO_4 - 10/174 = 5.75*10^{-2}$ моля (но эта цифра нам не понадобится). У каждого на катоде выделилось по 4,48/22,4 = 0,2 моля газа, что больше, чем могло получиться у Паши и Саши по уравнениям (1) и (2). По окончании этих реакций Паша имел раствор той же соли, что и Маша, а Саша – раствор щелочи. Следовательно, у Паши и Саши в электролизерах еще протекал электролиз воды – реакция (3).

12. Качественный состав растворов, получившихся после отключения тока:

Паша - K_2SO_4 и H_2O , Саша - KOH и H_2O (сера в осадке, а не в растворе), Маша - K_2SO_4 и H_2O . Теперь посчитаем массовые концентрации веществ в растворах. Повезло больше всех, как обычно, Маше. Соли у нее осталось в растворе столько же (10 г), а масса раствора уменьшилась только за счет разложения воды, которой стало меньше ровно на 0,2 моля (количество выделившегося на катоде водорода), т.е. на 0.2*18 = 3.6 г. Концентрация K_2SO_4 в ее растворе 100*10/(1000-3.6) =1,004 %. Концентрацию Пашиного раствора можно считать разными путями, но массу соли считать все равно придется, поэтому проще так. Количество сульфата в его растворе такое же, как было сульфита, т.е. $6.33*10^{-2}$ моля, его масса $6.33*10^{-2}*174 = 11.014$ г. По реакциям (1) и (3) воды расходуется столько же, сколько получается водорода, т.е. у Паши масса воды в растворе 1000-10-3,6 = 986,4 г. Масса всего раствора 986,4+11,014 = 997,414 г, концентрация сульфата калия 100*11,014/997,414 = 1,104 %. У Саши и вовсе все непросто, но вариантов расчета тоже несколько.

Щелочи в его растворе в 2 раза больше, чем было сульфида калия, т.е. $2*9,09*10^{-2} = 0,1818$ моля или 0,1818*56 = 10,18 г. Масса раствора стала меньше на 0,2*2 = 0,4 г за счет водорода, на $9,09*10^{-2}*32 = 2,9$ г за счет серы и еще на

 $(0,2-9,09*10^{-2})*32*0,5=1,7$ г за счет кислорода, т.е. составила 1000-0,4-2,9-1,7 = 995 г. Концентрация гидроксида калия в Сашином растворе 100*10,18/995=1,023 %.

Система оценивания:

1. Уравнения реакций (1)-(3), можно суммарные	$2 \text{ 6. } \times 3 = 6 \text{ 6.}$	
Указание на реакцию (3) в растворах Паши и Саши	$1 6. \times 2 = 2 6.$	
2. Качественный состав растворов	$1 \text{ 6. } \times 3 = 3 \text{ 6.}$	
Количественный состав растворов	<i>3</i> б. × <i>3</i> = <i>9</i> б.	
(Если расчет концентраций сделан без учета изменения масс растворов, то по 1 б, если изменения		
учтены, но не полностью, то по 2 б).		
Всего	20 б.	