«БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ» - Химия ОЧНЫЙ ОТБОРОЧНЫЙ ТУР. Продолжительность - 90 минут

(6 ноября 2020 года) 10 класс

Задача 10-1

Чтобы посеребрить медную пластинку массой 10 г, ее погрузили в стакан, содержащий 250 г 20%-ного раствора нитрата серебра. Когда пластинку вынули, оказалось, что масса нитрата серебра в растворе уменьшилась на 20%. Какой стала масса посеребренной пластинки? Напишите уравнение протекающей реакции. Приведите необходимые расчеты и пояснения.

Решение

Медь является более активным металлом и вытесняет серебро из его солей:

Cu +
$$2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

63.5 r $2.170=340$ r $2.108=216$ r

Найдем массу AgNO₃ в исходном растворе: $m(AgNO_3)=250 \cdot 0.2=50$ г. По условию задачи после протекания реакции масса AgNO₃ уменьшилась на 20% или на 20% $\cdot 50$ г/ $\cdot 100$ %= $\cdot 10$ г и составила 50-10=40 г. Масса пластинки в результате реакции уменьшилась на массу растворившейся меди и увеличилась на массу выделившегося серебра. Из уравнения реакции видно, что на реакцию с $\cdot 10$ г AgNO₃ потребовалось $\cdot 10$ г $\cdot 63.5$ г/моль/($\cdot 2.170$ г/моль)= $\cdot 1.87$ г меди Сu, а в результате реакции выделилось $\cdot 10$ г $\cdot 2.108$ г/моль/($\cdot 2.170$ г/моль)= $\cdot 6.35$ г серебра Ag. После реакции масса пластинки составила: $\cdot 10$ г $\cdot 1.87$ г $\cdot 14.48$ г.

Разбалловка:

За расчет массы пластинки

(расчет + правильный ответ)

 $10+10 = 20 \, 6$

5 б

За написание уравнения химической реакции

Итого 25 баллов

<u>Задача 10-2</u>

Колба заполнена газообразным сухим хлороводородом при температуре 25°C и давлении 1 атм. Затем колбу заполнили водой, в которой полностью растворился хлороводород. Определите массовую долю хлороводорода в растворе.

<u>Решение</u>

Обозначим объем колбы через V л. Тогда количество вещества HCl равно:

 $n(HCl) = PV/RT = 1 \text{ атм} \cdot V/[0.082 \text{ л} \cdot \text{атм}/(\text{моль} \cdot \text{K}) \cdot 298 \text{ K}], \text{ а масса } m(HCl) = M(HCl) \cdot n(HCl) = M(HCl) \cdot n($

=36.5г/моль·(1 атм·V/[0.082 л·атм/(моль·К)·298 K])моль=1.49V (г). После заполнения колбы водой масса раствора (с учетом того, что плотность воды 1 г/мл или 1000 г/л) стала равна:

 $m=m(H_2O) + m(HCl)=1000$ γ/π·V π+1.49V = 1001.49·V (γ).

Определим массовую долю HCl: $\omega(HCl)=[1.49V/(1001.49V)]\cdot 100\%=0.149\%$.

Разбалловка:

За расчет массовой доли (вычисления + правильный ответ)

12+13 =

Итого 25 баллов

256

Задача 10-3

В литровую колбу засыпали 102.6 г дигидрата хлорида меди (II), 26.0 г цинковой пыли, долили 968.4 мл воды, колбу закрыли пробкой и смесь перемешивали при нагревании до прекращения изменения окраски раствора. Вычислите количества всех веществ и растворителя в полученном растворе и в осадке, учитывая, что все реакции протекают количественно. Запишите уравнения химических реакций. Приведите все необходимые расчеты и комментарии. При вычислениях атомные массы металлов округляйте до целых значений.

Решение

 $CuCl_2 + Zn \rightarrow ZnCl_2 + Cu\downarrow$ $n(CuCl_2 \cdot 2H_2O) = 102.6/171 = 0.6$ моль. $m(воды кристаллизационной) = 18 \cdot 2 \cdot 0.6 = 21.6$ г.

n(Zn)=26/65=0.4 моль, цинк в недостатке. $n(ZnCl_2)=0.4$ моль, n(Cu)=0.4 моль. $CuCl_2+Cu\to Cu_2Cl_2\downarrow$ (белый осадок) либо: $CuCl_2+Cu\to 2CuCl\downarrow$ СuCl $_2$ в недостатке. $n(Cu_2Cl_2)=n(CuCl_2)=0.2$ моль. n(Cu остави.) =0.2 моль. Итого в осадке: n(Cu)=0.2 моль, $n(Cu_2Cl_2)=0.2$ моль (либо 0.4 моль CuCl). Итого в растворе: $n(ZnCl_2)=0.4$ моль, m(воды)=968.4+21.6=990 г, $n(H_2O)=990/18=55$ моль.

Разбалловка:

За расчет n(Cu), n(Cu ₂ Cl ₂), n(ZnCl ₂), n(H ₂ O) по 4 б.	16 б
За уравнение образования ZnCl ₂)	4 б
За уравнение образования Cu ₂ Cl ₂	5 б

Итого 25 баллов

Задача 10-4

Органическое соединение А массой 18.6 г полностью сгорает в присутствии необходимого количества кислорода, при этом получается 16.2 г воды и 13.44 л СО₂ (н.у.). Определите структурную формулу вещества А, содержащего в молекуле две одинаковые функциональные группы. Предложите схему синтеза его из 1,1-дибромэтана и неорганических веществ. Запишите полные уравнения всех реакций этой схемы, укажите условия реакций. Назовите все промежуточные органические продукты.

Решение

При полном сгорании вещества А получаются СО2 и Н2О.

Щелочь связывает CO_2 . Определим $n(CO_2) = 13.44/22.4 = 0.6$ моль.

Определим $n(H_2O) = 16.2/18 = 0.9$ моль.

Найдем массу углерода и водорода по n(CO₂ и H₂O).

 $m(C) = 0.6 \cdot 12 = 7.2$ г. $m(H) = 0.9 \cdot 2 \cdot 1 = 1.8$ г. Вычитая их сумму из массы сгоревшего органического вещества A, находим, что в нем присутствовал кислород,

$$m(O) = 18.6 - 7.2 - 1.8 = 9.6$$
 г. $n(O) = 9.6/16 = 0.6$ моль.

Простейшая формула вещества $C_2H_6O_2$. Она является единственно верной, так как $C_3H_9O_3$, $C_4H_{12}O_4$ и другие невозможны. Это этандиол (этиленгликоль) НОСН₂-СН₂ОН. В этой молекуле две функциональные ОН группы, что соответствует условию задачи.

Вариант схемы синтеза:

$CHBr_2-CH_3 + 2NaOH_{cпирт.} \rightarrow C_2H_2 + 2NaBr + 2H_2O$	(t)
$C_2H_2 + H_2 \rightarrow C_2H_4$	(Pt кат., <i>t</i>)
$3C_2H_4 + 2KMnO_4 + 4H_2O \rightarrow 3HOCH_2-CH_2OH + 2KOH + 2MnO_2$	$(20^{\circ}C)$

Промежуточные продукты: ацетилен, этен, этандиол.

Разбалловка:

За установление общей формулы $C_2H_6O_2$	10 б
За установление структурной формулы этандиола	3 б
За 3 уравнения схемы, названия органических продуктов и условия по 4 б.	12 б

Итого 25 баллов

«БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ» - Химия ОЧНЫЙ ОТБОРОЧНЫЙ ТУР. Продолжительность – 90 минут

(7 ноября 2020 года) 10 класс

Задача 10-1

К раствору, содержащему 3.88г смеси иодида натрия и бромида калия, добавили 78 мл 10%ного раствора нитрата серебра (плотность 1.09 г/мл). Выпавший осадок отфильтровали. Фильтрат может прореагировать с 13.3мл соляной кислоты с концентрацией 1.5 моль/л. Вычислите массовые доли солей в исходной смеси и объем хлороводорода (н.у.), необходимого для приготовления израсходованной соляной кислоты. Напишите уравнения протекающих реакций, приведите расчеты и необходимые пояснения.

Решение

При добавлении нитрата серебра к исходному раствору иодида натрия и бромида калия в осадок выпадают иодид и бромид серебра:

 $NaI + AgNO_3 \rightarrow AgI \downarrow + NaNO_3$ $KBr + AgNO_3 \rightarrow AgBr \downarrow + KNO_3$ Найдем количество добавленного $AgNO_3$.

 $n(AgNO_3)=V\cdot\rho\cdot\omega(AgNO_3)/M=78$ мл·1.09 г/мл·0.1/(170 г/моль)=0.05 моль.

Образовавшиеся AgI и AgBr отделили от раствора фильтрованием. К фильтрату прибавили раствор соляной кислоты. Выпадение осадка свидетельствует о присутствии в фильтрате нитрата серебра, который не прореагировал с NaI и KBr. AgNO₃ + HCl \rightarrow AgCl \downarrow + HNO₃. Количество соляной кислоты, необходимой для связывания избытка AgNO₃, равно: n(HCl)=0.0133 л·1.5 моль/n=0.02 моль. В соответствии с уравнением реакции в растворе осталось 0.02 моль AgNO₃, а с NaI и KBr прореагировало 0.05-0.02=0.03 моль AgNO₃.

Обозначим количество NaI через X моль, тогда количество KBr (0.03-X) моль. Их массы равны: $(150\cdot X)$ г и $[119\cdot(0.03-X)]$ г, соответственно. $(150\cdot X)+[119\cdot(0.03-X)]=3.88;$ X=0.01. Таким образом, исходная смесь содержит: n(NaI)=0.01 моль и n(KBr)=0.02 моль. Их массы: m(NaI)=0.01 моль·150 г/моль=1.5 г и m(KBr)=0.02 моль·119 г/моль=2.38 г. Массовые доли веществ в исходной смеси составляют: $\omega(NaI)=1.5/3.88=0.3866$ (38.66%) и $\omega(KBr)=2.38/3.88=0.6134$ (61.34%).

Найдем объем хлороводорода, необходимого для приготовления израсходованной соляной кислоты: $V=n(HCl)\cdot V_m=0.02$ моль $\cdot 22.4$ л/моль=0.448 л.

Разбалловка:

n(NaI)+n(KBr)=0.03 моль.

За расчет массовых долей солей, включая расчеты За расчет объема	14 6 5 6
За написание уравнений химических реакций	6 G
Sa nameanne ypabnemm xman reekim peakiam	Итого 25 баллов

Задача 10-2

В трех пробирках находятся осадки труднорастворимых карбоната, сульфата и фосфата бария. Как, пользуясь одним реагентом, распознать эти соли? Напишите уравнения соответствующих химических реакций и приведите необходимые пояснения.

Решение

В качестве универсального реагента для идентификации этих труднорастворимых солей можно использовать HCl или HNO₃.

При добавлении любой из указанных кислот к фосфату бария осадок растворится:

 $Ba_3(PO_4)_2 + 6HCl \rightarrow 3BaCl_2 + 2H_3PO_4$.

В случае карбоната бария осадок растворится и выделится газ:

 $BaCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 + H_2O$

Сульфат бария в кислотах не растворится: $BaSO_4 + HCl \rightarrow$.

Разбалловка:

За правильно предложенный реагент	5 б
За уравнения реакций	10 б
За объяснения	10 б
	Итого 25 баллов

Задача 10-3

Напишите химические уравнения, соответствующие следующей схеме:

$$CaC_2$$
 $\underline{H_2O}$ A $\underline{C(aкт)}$, \underline{t} Б $\underline{HNO_3}$ (1 моль), $\underline{H_2SO_4}$ В $\underline{Zn+HCl}$ Γ

Установите природу веществ А-Г и назовите их.

Решение

- 1). $CaC_2 + 2H_2O \rightarrow HC=CH + Ca(OH)_2$ (ацетилен)
- 2). HC=CH <u>C, t</u> C₆H₆ (бензол)
- 3). $C_6H_6 + HNO_3 \frac{H_2SO_4}{C_6H_5NO_2} + H_2O$ (нитробензол)
- 4). $C_6H_5NO_2 + 3Zn + 7HCl \rightarrow C_6H_5NH_3 + Cl^- + 3ZnCl_2 + 2H_2O$ (анилин солянокислый)

Разбалловка:

За установления природы и названия веществ А-Г по 3 б	12 б
За уравнение реакций 1)-3) по 3 б	9б
За уравнение реакции 4)	4 б

Итого 25 баллов

Задача 10-4


Некоторое органическое вещество содержит 50% углерода, 5.56% водорода и 44.44% кислорода по массе. При реакции этого вещества с гидроксидом бария образуется соединение состава $C_6H_6BaO_4$, с бромоводородом — $C_3H_5BrO_2$, с этанолом в кислой среде — $C_5H_8O_2$. Установите структурную формулу органического вещества и напишите уравнения соответствующих реакций.

Решение

Установим простейшую форму органического вещества C_XH_YO_Z.

 $x : y : z = \omega(C)/12 : \omega(H)/1 : \omega(O)/16 = =50/12:5.56/1:44.44/16=4.17:5.56:2.78=1.5:2:1=3:4:2.$

Простейшая формула органического вещества $C_3H_4O_2$. Рассмотрение химических свойств этого вещества, приведенных в условии задачи, позволяет заключить, что это – акриловая кислота:

$$2CH_2$$
= CH - $COOH$ + $Ba(OH)_2$ \rightarrow $(CH_2$ = CH - $COO)_2Ba$ + $2H_2O$

 $CH_2\!\!=\!\!CH\text{-}COOH\text{+}HBr\!\!\to\!\!CH_2(Br)\text{-}CH_2\text{-}COOH$

 $CH_2\!\!=\!\!CH\text{-}COOH\!+\!C_2H_5OH\!\frac{H_2SO_4,\!t}{C}H_2\!\!=\!\!CH\text{-}C(O)OC_2H_5$

Разбалловка:

 За установление формулы
 10 б

 За уравнения реакций
 15 б

Итого 25 баллов

«БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ» - Химия ОЧНЫЙ ОТБОРОЧНЫЙ ТУР. *Продолжительность* – 90 минут

(8 ноября 2020 года)

<u>10 класс</u>

Задача 10-1

Смесь оксидов железа (II) и железа (III) массой 39.2 г растворили в соляной кислоте с массовой долей хлороводорода 0.2 и плотностью раствора 1.101 г/мл. Для полного растворения смеси оксидов потребовалось 232 мл такого раствора.

Рассчитайте массовые доли оксидов в исходной смеси. Напишите уравнения протекающих реакций. Приведите все необходимые расчеты и пояснения.

Решение

Масса прореагирующей кислоты равна

 $m(HCl) = 0.20.232 \text{ мл} \cdot 1.101 = 51.1 \text{ г}.$

х моль 2х моль

 $FeO + 2HCl = FeCl_2 + H_2O$

у моль 6у моль

 $Fe_2O_3 + 6HCl = FeCl_3 + 3H_2O$

Составим уравнения баланса:

72x + 160y = 39.2

 $(2x +6y) \cdot 36.5 = 51.1$

x=0.1 моль, y=0.2 моль.

m(FeO) = 72.0.1=7.2

 $\omega(\text{FeO})=7.2/(7.2+32)=0.1837$ или 18.37%

 $m(Fe_2O_3) = 160 \cdot 0.2 = 32$

 $\omega(Fe_2O_3)=32/(7.2+32)=0.8163$ или 81.63%

Разбалловка:

За установление массовых долей (расчеты + правильные ответы)

10+10=20б

5 б

За написание химических реакций

Итого 25 баллов

Задача 10-2

Оксид серы (IV) растворили в воде при повышенном давлении. К раствору прибавили бромную воду до начала появления окраски брома, а затем избыток хлорида бария. Отфильтрованный и высушенный осадок имел массу 23.3 г. Сколько литров оксида серы (IV) измеренных при 17°С и давлении 120.5кПа, было растворено в воде? Напишите уравнения протекающих реакций. Приведите необходимые расчеты и пояснения.

Решение

Запишем уравнения реакций: $SO_2+H_2O \rightarrow H_2SO_3$;

 $H_2SO_3+Br_2+H_2O\rightarrow H_2SO_4+2HBr$;

 $H_2SO_4+BaCl_2\rightarrow BaSO_4\downarrow +2HCl.$

Количество вещества сульфата бария составляет $n(BaSO_4)=23.3/233=0.1$ моль, следовательно, количество SO_2 тоже составляет 0.1моль. Найдем объем, который занимает это количество SO_2 при T=273+17=290 К и P=120.5 к Π а:

V=nRT/P=0.1 моль·8.314 (Дж·моль/К)·290 К/(120.5·10³ Па)=2·10⁻³ м³=2 л.

Разбалловка

За расчет объема (расчеты + правильный ответ)

5+5= 106

5+5+5=156

Утого **25 баллов**

Задача 10-3

Воспользуйтесь выданной таблицей растворимости и объясните, почему некоторые вещества можно, а некоторые невозможно синтезировать ожидаемыми реакциями простого ионного обмена в водном растворе. Составьте уравнения протекающих реакций.

 $2NH_4NO_3 + K_2SiO_3 \rightarrow ...$

За уравнения реакций

 $Cu(NO_3)_2 + Na_2CO_3 \rightarrow ...$

 $BaCl_2 + 2NaHSO_4 \rightarrow ...$ $HgCl_2 + 2NaOH \rightarrow ...$ $Cu(NO_3)_2 + 2KI \rightarrow ...$ $Pb(NO_3)_2 + K_2SO_4 \rightarrow ...$

Решение

В таблицах растворимости для некоторых продуктов реакций ионного обмена поставлены прочерки или вопросительные знаки с примечанием «не существуют или разлагаются волой».

Промежуточные продукты реакций 1 и 2 подвергаются гидролизу по катиону и аниону с образованием слабого основания и слабой кислоты:

 $2NH_4NO_3 + K_2SiO_3 \rightarrow 2NH_3 + H_2SiO_3 \downarrow + 2KNO_3$ $2Cu(NO_3)_2 + 2Na_2CO_3 + H_2O \rightarrow (CuOH)_2CO_3 \downarrow + CO_2 \uparrow + 4NaNO_3$

Неустойчивый в растворе гидросульфат бария диспропорционирует до нерастворимого BaSO₄ и H₂SO₄:

 $BaCl_2 + 2NaHSO_4 \rightarrow BaSO_4 \downarrow + H_2SO_4 + 2NaCl$

Гидроксид ртути (II) не существует, так как разлагается до оксида и воды: $HgCl_2 + 2NaOH \rightarrow HgO\downarrow + H_2O + 2NaCl$

Йодид меди (II) не может быть получен из-за окислительно-восстановительной реакции между катионами Cu^{2+} и анионами I^- :

 $2Cu(NO_3)_2 + 4KI \rightarrow 2CuI \downarrow + I_2 + 4KNO_3$

Сульфат свинца нерастворим в воде, и реакция ионного обмена идет до конца: $Pb(NO_3)_2 + K_2SO_4 \rightarrow PbSO_4 \downarrow + 2KNO_3$

Разбалловка:

За уравнение образования CuI За другие 5 уравнений по 4 б. 5 б 20 б

Итого 25 баллов

Задача 10-4

Некоторое вещество А содержит 15.4% углерода, 3.2% водорода, 81.4% йода. Определите вещество А. Предложите кратчайший путь синтеза вещества А из этана. Предложите схемы синтеза из соединения А: а) бензола; б) монохлорпроизводного углеводорода Б, содержащего 56.8% хлора, у которого число атомов углерода в молекуле такое же, как у вещества А. Можно использовать любые неорганические вещества. Составьте уравнения реакций, укажите условия их протекания.

Решение

 $\overline{\ \ }$ Элемент — йод 127 I с порядковым номером 53. Вещество может иметь формулу $C_xH_yI_z$.

x:y:z=15.4/12:3.2/1:81.4/126.9=1.3:3.2:0.64=2:5:1. Простейшая формула $\mathbf{C_2H_5I}$. Она является единственно верной, так как $\mathbf{C_4H_{10}I_2}$ не может существовать.

Вещество Б содержит 56.8% хлора. Формулу его можно представить как C₂H_xCl.

Выразим массовую долю хлора $\omega(\text{Cl}) = 0.568 = 35.5/\text{M}$, где M — молярная масса вещества Б. Отсюда M=62.5. x = 62.5-35.5-24=3. Следовательно, формула вещества Б C₂H₃Cl (CH₂=CH-Cl). Это винилхлорид (хлорэтен).

Вариант схемы органического синтеза:

$$Pt, t^{\circ}$$
 HI, t° KOH спирт., t° C_2H_6 \longrightarrow C_2H_4 \longrightarrow C_2H_5I \longrightarrow C_2H_4 \longrightarrow

-H₂

-KI, -H₂O

Pt, t°

$$C_{2H_2} \longrightarrow C_{2H_2} \longrightarrow C_{6H_6}$$

-H₂

HCl. t°

Cl₂, 300°

Предположение синтеза йодэтана по реакции этана с йодом считать ошибкой, так как йод в отличие от других галогенов не галоидирует алканы.

Если написаны 2 метода синтеза CH_2 =CHCl (из C_2H_2 и C_2H_4), то оценить только один.

Разбалловка:

За определение йодэтана	4 б
За определение СН2=СНС1	3 б
За 6 уравнений реакций по 3 б.	18 б
	Итого 25 баллов