10 класс

1. (30 баллов) Тело, брошенное вертикально вверх с некоторой высоты, находилось в полете 3 с и прошло путь, втрое больший начальной высоты. Найти максимальную высоту подъема тела над землей. Ускорение свободного падения считать равным 10 м/c^2 .

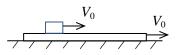
Ответ: Максимальная высота подъема равна $9(3-2\sqrt{2})g$, где g — ускорение свободного падения, т.е. примерно 15 м.

Решение: Пройденный путь втрое больше начальной высоты только в том случае, если максимальная высота подъема тела в два раза больше начальной. Обозначим время подъема тела до верхней точки через t_1 , а время падения от верхней точки до земли через t_2 . Очевидно, что t_1 равно также времени падения тела с максимальной высоты до начальной (половины максимальной), поэтому можно записать уравнение

$$\frac{gt_1^2}{2} = \frac{1}{2} \frac{gt_2^2}{2},$$

откуда следует $t_2=\sqrt{2}t_1$. Учитывая также, что $t_1+t_2=3$ с, находим $t_2=3\sqrt{2}(\sqrt{2}-1)$ с. Для максимальной высоты получаем

$$\frac{gt_2^2}{2} = 9(3 - 2\sqrt{2})g \approx 15$$
 м.


Разбалловка: Понято, что максимальная высота вдвое больше начальной – 10 баллов.

Это условие записано через времена $t_{1,2} - 10$ баллов.

Найдено $t_2 - 5$ баллов.

Получен правильный ответ – 5 баллов.

2. (30 баллов) На доску, лежащую на горизонтальном столе, поставили брусок и сообщили ему и доске одинаковую скорость V_0 (см. рис.). На какое расстояние сместится брусок относительно доски, если его масса равна массе доски, коэффициент трения между бруском и доской μ , а между

доской и столом 2μ ? Ускорение свободного падения равно g. Считать, что брусок не соскальзывает с доски.

Ответ: Брусок сместится относительно доски на $V_0^2/(3\mu g)$.

Решение: На брусок действует направленная против скорости сила трения μmg (m – масса бруска) со стороны доски, на доску – направленная по скорости сила трения μmg со стороны бруска и направленная

против скорости сила трения $4\mu mg$ со стороны стола. В результате доска и брусок будут двигаться равнозамедленно, брусок – с ускорением μg , доска – с ускорением $3\mu g$. Скорость доски запишем в виде

$$V_1 = V_0 - 3 \mu g t$$
,

а скорость бруска как

$$V_2 = V_0 - \mu gt$$
.

Доска остановится через время $t_1 = V_0 / (3 \mu g)$, совершив относительно стола перемещение

$$L_1 = V_0^2/(6\mu g)$$
.

Брусок остановится через время $t_2 = V_0 / (\mu g)$, совершив относительно стола перемещение

$$L_2 = V_0^2/(2\mu g)$$
.

Смещение бруска относительно доски находим как

$$L_2 - L_1 = V_0^2 / (3\mu g)$$
.

Разбалловка: Записана сила трения, действующая на брусок – 5 баллов.

Записаны силы трения, действующие на доску – 5 баллов.

Найдено ускорение бруска – 5 баллов.

Найдено ускорение доски – 5 баллов.

Найдено искомое смещение бруска – 10 баллов.

3. (40 баллов) Подвешенный на нити шарик отклонили от вертикали так, что нить образовала прямой угол с вертикалью, и отпустили. Чему равна вертикальная компонента ускорения шарика в момент, когда горизонтальная компонента принимает значение 1,5g (g – ускорение свободного падения)?

Ответ: Вертикальная компонента ускорения равна 0.5g.

Решение: Пусть в рассматриваемый момент нить составляет с вертикалью угол α. Запишем второй закон Ньютона для шарика в проекции на направление нити в виде

$$\frac{mV^2}{L} = T - mg\cos\alpha,$$

где m и V – масса и скорость шарика, L – длина нити, T – сила натяжения нити. Из закона сохранения энергии также следует

$$\frac{mV^2}{2} = mgL\cos\alpha.$$

Из записанных уравнений находим, что $T = 3mg\cos\alpha$. Горизонтальное ускорение шарика определяется горизонтальной проекцией силы T и равно $3g\cos\alpha\sin\alpha$. С другой стороны, по условию эта проекция ускорения равна 1,5g. Таким образом, приходим к уравнению

$$3g\cos\alpha\sin\alpha = 1.5g$$
,

откуда получаем, что $\alpha = 45^\circ$ и, следовательно, $T = 3mg/\sqrt{2}$. Записывая второй закон Ньютона в проекции на вертикальное направление в виде

$$ma_{\text{верт}} = T\cos\alpha - mg$$

находим вертикальную проекцию ускорения

$$a_{\text{верт}} = 0.5g.$$

Разбалловка: Записан второй закон Ньютона в проекции на нить – 5 баллов.

Записан закон сохранения энергии – 5 баллов.

Получено выражение $T = 3mg\cos\alpha - 5$ баллов.

Записан второй закон Ньютона в проекции на горизонталь – 5 баллов.

Найден угол $\alpha - 10$ баллов.

Записан второй закон Ньютона в проекции на вертикаль – 5 баллов.

Найдена вертикальная проекция ускорения – 5 баллов.