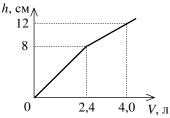

1. (30 баллов) Два жучка одновременно начинают равномерное движение по сторонам квадрата. График зависимости расстояния L между жучками от времени t приведен на рисунке. Найти скорости жучков и длину стороны квадрата.

Ответ: Скорости жучков одинаковы и равны 2 мм/с. Длина стороны квадрата равна 9 см.

Решение: Приведенный график зависимости L(t) возможен только в том случае, когда скорости жучков одинаковы по величине, жучки обегают квадрат в одном направлении и расстояние между ними меньше стороны квадрата. При этом участки с постоянным значением L=3 см соответствуют движению жучков по одной стороне квадрата, а участки с переменным расстоянием L(t) соответствуют движению по разным (смежным) сторонам. Из графика можно понять, что жучки проходят через одну и ту же вершину квадрата с интервалом в 15 с. Поскольку расстояние между жучками на одной стороне равно 3 см, то скорость жучка находится как 3 см : 15 с = 2 мм/с. Из графика также следует, жучок пробегает сторону квадрата за 45 с. Тогда длина стороны находится как 2 мм/с · 45 с = 9 см.

Разбалловка: Понято, что скорости жучков одинаковы – 5 баллов.


Понято, что жучки бегут в одну сторону – 5 баллов.

Понято, что расстояние между жучками меньше стороны квадрата – 5 баллов.

Найдена скорость жучков – 5 баллов.

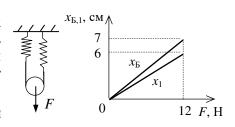
Найдена длина стороны квадрата – 10 баллов.

2. (30 баллов) В цилиндрический сосуд, на дне которого лежит куб, начинают наливать воду. График зависимости высоты h уровня воды в сосуде от объема V налитой воды приведен на рисунке. Найти длину ребра куба.

Ответ: Длина ребра куба равна 10 см.

Решение: Обозначим через S_{π} площадь дна сосуда, а через S_{κ} площадь основания куба. Участок графика 0-2,4 л соответствует заполнению объема

над незанятой кубом частью площади дна S_{π} - S_{κ} до уровня 8 см. Находим S_{π} - S_{κ} = 2,4 л : 0,8 дм = 3 дм². Поскольку на участке 2,4-4,0 л уровень воды растет медленнее, то вода начинает заполняет объем с большей площадью основания S_{π} . Это возможно в двух случаях: либо уровень воды поднимается выше куба, либо куб начинает плавать, и вода занимает объем под ним. В любом случае, получаем S_{π} = (4,0 – 2,4) л : 0,4 дм = 4 дм². Используя ранее найденное значение S_{π} - S_{κ} = 3 дм², находим, что S_{κ} = 1 дм², т.е. ребро куба равно 1 дм. Поскольку эта величина больше 8 см, приходим к выводу, что при h = 8 см куб начал всплывать.


Разбалловка: По участку 0-2,4 л найдена разница площадей дна и основания куба – 5 баллов.

По участку графика 2,4-4,0 л найдена площадь дна сосуда – 5 баллов.

Понято, что куб всплывает – 10 баллов.

Найдено ребро куба – 10 баллов.

3. (40 баллов) В системе, показанной на рисунке, концы подвешенных пружин соединены нитью, на которой висит блок. Блок начинают тянуть вниз с силой F, величину которой постепенно увеличивают. Используя график зависимости смещения блока $x_{\rm B}$ и конца одной из пружин $x_{\rm 1}$ от величины F (см. рис.), найти коэффициенты жесткости пружин.

Ответ: Коэффициенты жесткости первой и второй пружин равны 1 H/см и 0,75 H/см соответственно.

Решение: Из условия равновесия блока следует, что сила натяжения нити равна F/2. Тогда жесткость первой пружины находится как $k_1 = (F/2)$: $x_1 = (12/2)$ H : 6 см = 1 H/см. Смещение блока x_5 связано с растяжениями пружин x_1 и x_2 как $x_5 = (x_1 + x_2)/2$. Отсюда получаем, что $x_2 = 2x_5 - x_1$. В частности, $x_2 = 2 \cdot 7 - 6 = 8$ см при F = 12 H. Тогда жесткость второй пружины находится как $k_2 = (F/2)$: $x_2 = (12/2)$ H : 8 см = 3/4 H/см.

Разбалловка: Понято, что действующие на пружины со стороны нити силы равны F/2 - 10 баллов.

Найдена жесткость первой пружины – 5 баллов.

Растяжение второй пружины выражено через $x_{\rm B}$ и $x_{\rm I}-15$ баллов.

Найдена жесткость второй пружины – 10 баллов.