
Межрегиональная олимпиада школьников

"Будущие исследователи – будущее науки" 2014/2015

Физика. Финальный тур. Время выполнения – 180 минут.

11 класс

1. (30 баллов) Клин массы m с углом α при основании находится на горизонтальном столе. На наклонную грань клина положили груз и начали на него действовать с постоянной силой, направленной перпендикулярно наклонной грани клина (см. рис.). Трение между грузом и клином, клином и столом отсутствует. Чему равно ускорение груза, если известно, что оно направлено вертикально (10 баллов)? С какой силой клин при этом давит на стол (20 баллов)? Ускорение свободного падения д считать известным.

Ответ: Ускорение груза равно g. Клин давит на стол с силой $mg/\sin^2\alpha$.

Решение: Записывая второй закон Ньютона для груза в проекции на неподвижную ось, параллельную наклонной грани клина (вдоль нее действует только проекция силы тяжести), находим, что проекция ускорения груза на эту ось равна $g\sin\alpha$. Отсюда находим ускорение груза $a_r = g$.

Между ускорением груза a_{Γ} и ускорением клина $a_{\kappa\pi}$ (направленным горизонтально вправо) существует кинематическая связь: проекции этих ускорений на направление, перпендикулярное наклонной грани клина, равны (в этом направлении груз и клин движутся вместе), т.е. $a_r \cos \alpha = a_{\kappa n} \sin \alpha$. Находим отсюда ускорение клина $a_{\rm kn}$ = gctg α . Обозначив силу, с которой груз давит на клин, через N, запишем второй закон Ньютона для клина в проекции на горизонтальную ось: $ma_{\kappa \pi} = N \sin \alpha$. Отсюда следует, что $N = mg\cos\alpha/\sin^2\alpha$. Сила, с которой клин давит на стол, находится как сумма действующей на клин силы тяжести mg и вертикальной проекции силы N: $mg + mg\cos\alpha/\sin^2\alpha = mg/\sin^2\alpha$.

2. (25 баллов) Идеальная нить длины L связывает кольцо, которое может скользить без трения по неподвижной горизонтальной спице, и точечный груз, масса которого вдвое больше массы кольца. Вначале кольцо и груз удерживают в положении, когда нить образует малый угол с вертикалью (см. рис.), и затем освобождают. Найти период гармонических колебаний, которые будут происходить в системе. Учесть, что при малых колебаниях движением груза по вертикали можно пренебречь. Ускорение свободного падения д считать известным.

Ответ: Период колебаний равен $2\pi \sqrt{\frac{L}{3\sigma}}$.

Решение: Поскольку на систему «груз-кольцо» не действует горизонтальных сил, ее центр масс не смещается в горизонтальном направлении. Незначительным вертикальным смещением центра масс при малых колебаниях пренебрегаем. Таким образом, в данном приближении движение груза представляет собой колебания математического маятника с точкой подвеса в центре масс. Длина нити этого маятника (расстояние от груза до центра масс) составляет L/3, а период его колебаний равен $2\pi\sqrt{L/(3g)}$. Из неподвижности центра масс следует также, что движение кольца имеет тот же период.

3. (25 баллов) Равномерно заряженное полукольцо согнули под углом 90° вокруг оси симметрии АВ (см. рис.). Во сколько раз изменилась величина напряженности электрического поля в центре кольца О?

Ответ: Напряженность электрического поля возросла в $\sqrt{3/2} \approx 1,2\,$ раза.

Решение: Обозначим через E величину напряженности поля, создаваемого в т. О четвертью кольца. До сгибания полукольца две составляющие его четверти создают в т. О поля, которые направлены под углом 45° к оси симметрии АВ и лежат в одной плоскости с этой осью. Полное поле при этом направлено вдоль оси AB и равно по величине $E\sqrt{2}$. После сгибания полукольца векторы полей от четвертей кольца по-прежнему будут направлены под углом 45° к оси AB, однако теперь плоскости, проходящие через каждый из векторов полей и ось АВ, будут перпендикулярны друг другу. Раскладывая один из

векторов полей на две составляющие — вдоль оси AB и вдоль направления, перпендикулярного оси AB и другому вектору поля, находим величину полного поля в этом случае: $E\sqrt{3}$. Таким образом, отношение полей в двух случаях равно $\sqrt{3/2} \approx 1.2$.

4. (20 баллов) При взаимном движении источника и приемника электромагнитных волн наблюдается эффект Доплера: например, при их сближении частота регистрируемого приемником сигнала превышает излучаемую источником частоту v_0 на величину $\Delta v = v_0 V/c$, где V – скорость сближения источника и приемника, а c – скорость света (предполагается, что V << c). Для измерения скоростей движущихся объектов применяют доплеровские радары, в которых источник и приемник совмещены и приемник регистрирует отраженный от объекта сигнал. Какую частоту зафиксирует радар, излучающий частоту v_0 и направленный на приближающийся со скоростью V автомобиль?

Ответ: Радар зафиксирует частоту $v_0(1 + 2V/c)$.

Решение: Излученная радаром электромагнитная волна при падении на автомобиль наводит в нем электрические токи. При этом автомобиль играет фактически роль движущегося приемника, и поэтому наведенные токи колеблются на доплеровски сдвинутой частоте $v_0(1 + V/c)$. Колеблющиеся токи переизлучают электромагнитную волну. При этом автомобиль выступает уже в роли движущегося передатчика, а излученная волна испытывает еще один доплеровский сдвиг. В итоге частота приходящей к радару волны будет равна $v_0(1 + 2V/c)$.