Межрегиональная олимпиада «Будущие исследователи – будущее науки» по физике. Финальный тур – 2013 г. 8 класс

1. (30 баллов) Из двух городов A и B, находящихся на расстоянии S, навстречу друг другу одновременно выехали два автомобиля. Первый движется со скоростью V_1 , а второй — со скоростью V_2 . С момента, когда они встретились, первый поехал со скоростью V_2 , а второй — со скоростью V_1 (в прежних направлениях). Какое время понадобится первому, чтобы приехать в город B, а второму — в город A?

Решение:

Автомобили достигнут пунктов назначения одновременно через время $2S/(V_1+V_2)$.

2. (35 баллов) Три тела одинаковой массы с одинаковыми удельными теплоемкостями имеют температуры 180°C, 120°C и 60°C. До какой наименьшей температуры можно охладить самое нагретое тело, приводя тела в тепловой контакт в любой комбинации?

Решение:

Вначале нужно привести в контакт самое нагретое тело и тело с температурой 120°С. В результате установления теплового равновесия температура этих тел станет равной 150°С. После этого тело, имевшее начальную температуру 180°С (и охладившееся до 150°С), нужно привести в контакт с телом, имеющим температуру 60°С. В результате установления теплового равновесия тела приобретут температуру 105°С.

3. (35 баллов) Связанные нитью алюминиевый шар массы 0,27 кг и пустая банка плавают в воде (см. рисунок), налитой в цилиндрический сосуд с поперечным сечением 100 см^2 . На сколько изменится уровень воды в сосуде, если нить оборвется? Плотность воды 1000 кг/м^3 , плотность алюминия 2700 кг/m^3 .

Решение:

Поскольку масса содержимого в сосуде не меняется, то сила давления на дно сосуда не должна измениться после обрыва нити, т.е. $\rho_B g h_1 S = \rho_B g h_2 S + m g (1 - \rho_B/\rho_{an})$, где h_1 и h_2 – уровни воды в сосуде до и после обрыва нити, m – масса шара, ρ_B – плотность воды, ρ_{an} – плотность алюминия, а S – площадь дна (поперечное сечение) сосуда. В правой части уравнения учтено, что сила давления шара на дно равна разности действующих на шар сил тяжести и Архимеда. В итоге находим понижение уровня воды: $h_1 - h_2 = m(1 - \rho_B/\rho_{an})/(\rho_B S)$ или $h_1 - h_2 = 1,7$ см.