10 класс

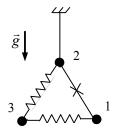
1. (20 баллов) Тело бросили с начальной скоростью V_0 под углом 60° к горизонту. На какой высоте нормальное и тангенциальное ускорения тела станут равны по величине? Ускорение свободного падения g считать известным.

Решение:

Полное ускорение тела, равное g, в течение всего полета постоянно и направлено вертикально вниз. Нормальное и тангенциальное ускорения являются проекциями полного ускорения на перпендикулярное и параллельное к скорости направления. Поэтому условие равенства их величин выполняется на высоте, где вектор скорости направлен под углом 45° к вертикали. Горизонтальная компонента скорости не меняется во время полета и равна $V_0 \cos 60^{\circ} = V_0/2$. Следовательно, на искомой высоте и вертикальная компонента скорости также равна $V_0/2$. Записывая закон сохранения энергии, находим искомую высоту

$$\boldsymbol{H} = \frac{\boldsymbol{V}_0^2}{4\boldsymbol{g}}.$$

2. (30 баллов) Три шарика массы *т* каждый, расположенные в вершинах правильного треугольника и соединенные идеальной нитью и двумя невесомыми пружинами, подвешены на еще одной идеальной нити (см. рисунок). Нить, соединяющую шарики 1 и 2, пережигают. Какими будут ускорения шариков 1 (10 баллов), 2 (10 баллов) и 3 (10 баллов) сразу после пережигания нити? Ускорение свободного падения *g* считать известным.



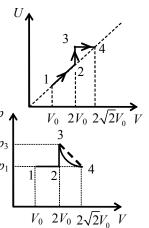
Решение:

Из условия равновесия системы шариков до пережигания нити следует, что сила натяжения нити 1-2 равна $2mg/\sqrt{3}$, упругая сила (сжатой) пружины 1-3 равна $mg/\sqrt{3}$, а упругая сила (растянутой) пружины 2-3 равна $2mg/\sqrt{3}$. Сразу после пережигания нити деформации пружин и, следовательно, действующие со стороны пружин упругие силы не успевают измениться, но мгновенно исчезает натяжение нити 1-2, а также мгновенно изменяется натяжение вертикальной нити. Из неизменности сил, действующих на шарик 3, следует, что его ускорение остается **равным нулю**. Результирующая сила, действующая на шарик 1, равна «исчезнувшей» силе натяжения нити 1-2. Следовательно, ускорение шарика 1 направлено вдоль линии 2-1 вниз и равно $2g/\sqrt{3}$. Ускорение шарика 2 направлено горизонтально (на рисунке - влево) и определяется горизонтальной компонентой «исчезнувшей» силы натяжения нити 1-2, т.е. равно $g/\sqrt{3}$.

3. (30 баллов) Внутренняя энергия U и объем V идеального одноатомного газа изменялись в соответствии с приведенным графиком. На каком из участков 1-2, 2-3 или 3-4 полученное газом тепло максимально?

Решение:

Изобразим процесс на плоскости p,V (см. рисунок). Полученное газом тепло на участке 1-2 (изобара) равно $Q_{12}=(5/2)p_1V_0$. На участке 2-3 (изохора) полученное тепло равно $Q_{23}=3(p_3-p_1)V_0$. Из уравнения Клапейрона-Менделеева p_3 для состояний 3 и 4 находим, что $p_3=\sqrt{2}$ p_1 , поэтому $Q_{23}=3(\sqrt{2}-1)p_1V_0\approx 1,2$ p_1



 p_1V_0 . Полученное тепло на изотермическом участке 3-4 равно совершенной газом работе, которую оценим сверху как площадь трапеции (площадь под отрезком жирной штриховой прямой): $Q_{34} = A_{34}$ $<(p_1+p_3)(\sqrt{2}-1)V_0$ или

 $Q_{34} < p_1 V_0$. Таким образом, полученное тепло максимально на участке 1-2.

4. (20 баллов) Оцените, какая масса воздуха выйдет из аудитории, в которой вы сейчас находитесь, если температура в ней повысится на 1°C. Молярная газовая постоянная $R = 8,31 \, \text{Дж/(К·моль)}$, молярная масса воздуха M = 0.029 кг/моль.

Решение:

Из уравнения Клапейрона-Менделеева при постоянных давлении и объеме находим убыль массы воздуха в аудитории:

$$m_1 - m_2 = \frac{pVM}{R} \left(\frac{1}{T} - \frac{1}{T+1} \right) \approx \frac{pVM}{RT^2}$$
.

Для оценки берем $p=10^5$ Па, T=300 К. В итоге получаем

$$m_1 - m_2 \approx 4 \cdot 10^{-3} V_{\odot}$$

 $m_1 - m_2 \approx 4 \cdot 10^{-3} V$, где объем аудитории V берется в м 3 , а масса вышедшего воздуха $m_1 - m_2$ получается в кг.

10 класс

1. (20 баллов) Тело движется в первом случае под действием силы тяжести, а в другом — по той же траектории с постоянной скоростью. В верхней точке 1 для обоих вариантов движения скорости тела совпадают. Найти во втором случае ускорение тела в точках 1 (верхняя точка) и 2 (скорость направлена под углом 45° к горизонту).

Решение

Поскольку в обоих случаях тело движется по одинаковым траекториям, а в первом случае движение его происходит в поле силы тяжести, значит траекториями тела являются две одинаковые параболы с вершинами в верхней точке (на рисунке точка 1). Воспользуемся выражением для нормального ускорения a_n :

$$a_{\rm n} = \frac{V^2}{R},$$

где V – скорость тела, а R – радиус кривизны траектории. Рассмотрим первый случай – движение под действием силы тяжести. В точке 1 нормальное ускорение a_{n1} равно ускорению свободного падения g, поскольку в этой точке полное ускорение совпадает с нормальным. В точке 2 нормальное ускорение a_{n2} , которое легко выразить через V_2 и R_2 , может быть найдено путем проектирования полного ускорения \bar{g} на нормаль:

$$a_{n2} = \frac{V_2^2}{R_2} = g\cos 45^\circ = g\frac{\sqrt{2}}{2}.$$

Учитывая, что при движении в поле тяжести сохраняется горизонтальная компонента скорости (она равна скорости V_1 в первой точке), находим

$$V_2 = \frac{V_1}{\cos 45^{\circ}} = V_1 \sqrt{2}.$$

Таким образом,

$$a_{n2} = 2\frac{V_1^2}{R_2} = g\frac{\sqrt{2}}{2}.$$

Рассмотрим теперь второй вариант движения — движение по параболе с постоянной скоростью. В этом случае ускорение тела будет чисто нормальным. Обозначим ускорение тела в точках 1 и 2 через a_1' и a_2' соответственно. Поскольку в первой точке, по условию, в обоих вариантах движения скорости совпадают, а радиусы кривизны из-за эквивалентности парабол вообще равны для любой пары эквивалентных точек, то

$$a_1' = \frac{V_1^2}{R_1} = a_{n1} = g.$$

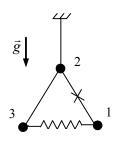
Для второй точки имеем:

$$a_2' = \frac{\left(V_2'\right)^2}{R_2} = \frac{V_1^2}{R_2}.$$

Сравнивая ускорения, находим окончательный результат:

$$a_2'=g\frac{\sqrt{2}}{4}.$$

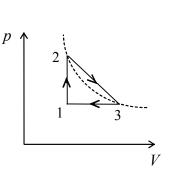
2. (30 баллов) Три шарика массы m каждый, расположенные в вершинах правильного треугольника и соединенные идеальными нитями и невесомой пружиной, подвешены на еще одной идеальной нити в поле тяжести (см. рисунок). Найти силу упругости пружины. Нить, соединяющую шарики 1 и 2 пережигают. Какими будут сразу после пережигания нити ускорения 1-го (10 баллов), 2-го (10 баллов) и 3-го (10 баллов) шариков?



Решение:

Сила упругости равна $mg/\sqrt{3}$. Ускорения первого, второго и третьего шариков соответственно равны $2g/\sqrt{3}$, $4g/(5\sqrt{3})$, $2g/(5\sqrt{3})$.

3. (30 баллов) Один моль идеального газа совершает цикл, состоящий из изохоры 1-2, участка 2-3 с линейной зависимостью давления от объема и изобары 3-1 (см. рисунок). Точки 2 и 3 лежат на одной изотерме, отношение максимального и минимального объемов равно 2, максимальная температура больше температуры на изотерме на ΔT . Найти работу газа за цикл.



Решение

Работа газа за цикл равна $2R\Delta T$, где R – молярная газовая постоянная.

4. (20 баллов) В какой пропорции нужно смешать гелий и азот, чтобы плотность смеси была равна половине плотности чистого азота, взятого при тех же давлении и температуре, что и смесь. Молярная масса гелия равна 0.004 кг/моль, азота 0.028 кг/моль.

Решение:

Обозначая массы молекул гелия и азота через m_1 и m_2 соответственно и концентрации этих газов в смеси — через n_1 и n_2 , выражаем плотность смеси $\rho_{\text{смеси}} = m_1 n_1 + m_2 n_2$. По условию $\rho_{\text{смеси}} = (1/2) m_2 n_3$, где n_3 — концентрация чистого азота. Поскольку чистый азот берется при тех же давлении и температуре, что и смесь, то $n_3 = n_1 + n_2$. Из записанных соотношений находим $n_1/n_2 = 7/5$. Таким же будет и отношение числа молей гелия и азота (а также и полного числа молекул). Можно найти и массовую пропорцию газов в смеси путем умножения 7/5 на отношение молярных масс газов, т.е. на 1/7.