Олимпиада «Будущие исследователи – будущее науки» Математика. 2020-2021 учебный год

Финальный тур. Продолжительность 180 минут.

Общие критерии оценивания

Каждая из пяти задач данной олимпиады оценивается, исходя из максимума в 20 баллов. Таким образом, максимальный результат участника может быть 100 баллов. Соответствие правильности решения и выставляемых баллов приведено в таблице.

Символы-	Правильность (ошибочность) решения
Баллы	
+ 20	Полное верное решение
+. 16	Верное решение. Имеются небольшие недочеты, в целом не
	влияющие на решение.
± 12	Решение в целом верное, но содержит ошибки, либо пропу-
	щены случаи, не влияющие на логику рассуждений.
+/2 10	Верно рассмотрен один (более сложный) из существенных
/2 10	случаев, верно получена основная оценка.
∓ 8	Доказаны вспомогательные утверждения, помогающие в ре-
	шении задачи.
- . 4	Рассмотрены только отдельные важные случаи или имеются
	начальные продвижения.
- 0	Решение неверное, продвижения отсутствуют.
0 0	Решение отсутствует (участник не приступал)

Если в задаче два пункта, то только за один решенный пункт максимальная оценка 10 баллов, а другие (промежуточные) оценки соответствуют половинкам баллов приведенной таблицы. Рекомендуется сначала оценивать задачу в символах («плюс-минусах») при необходимости оценку в символах можно дополнить значком—стрелкой вверх или вниз, что скорректирует соответствующую оценку на один балл. Например, символ $\pm \uparrow$ будет соответствовать 13 баллам.

7.1. В четырехзначном числе Петя зачеркнул первую цифру и получил трехзначное число. Затем он разделил исходное число на это трехзначное и получил частное 3, а остаток 8. Чему равно исходное число? (Найдите все возможные числа).

Ответ: 1496 или 2996. **Решение**. Пусть x — первая цифра, y — трехзначное число, полученное после зачеркивания первой цифры. Тогда $1000 \, x + y = 3 \, y + 8$, т.е. $500 \, x = y + 4$. Отсюда, учитывая неравенства 0 < y < 1000, получаем, что x равен либо 1, либо 2. Тогда, соответственно, y = 496 или y = 996.

7.2. В четырехугольнике ABCD, у которого AB = CD, проведена диагональ AC. Докажите, что если угол ACB тупой, то угол ADC острый.

Решение. Предположим, от противного, что угол D не острый. Тогда в \triangle ACD имеем AC > CD. Но в \triangle ABC против тупого угла ACB лежит бо́льшая сторона: AB > AC. Таким образом, CD < AC < AB. Получили противоречие с условием CD = AB.

7.3. У Коли семь старинных монет: четыре одинаковых дублона и три одинаковых кроны. Точный вес монет он забыл, но помнит, что дублон весит 5 или 6 грамм, а крона – 7 или 8 грамм. Сможет ли он узнать точный вес монет при помощи двух взвешиваний на чашечных весах без гирь?

Ответ: сможет. Решение. Первое взвешивание: на левую чашу весов положим все четыре дублона, а на правую – все три кроны. Таким образом, вес монет на левой чаше 20 или 24 грамма, а на правой – 21 или 24 грамма. Если весы в равновесии, то вес монет однозначно определяется: дублон весит 6 грамм, а крона – 8 грамм. Если левая чаша перевесила, то это означает, что вес монет на ней 24 грамма, в то время, как на правой – 21 грамм, т.е. тоже однозначно определен вес монет: дублон весит 6 грамм, а крона – 7 грамм. Если же перевесила правая чаша, то однозначно определен только вес дублона (он весит 5 грамм), а вес кроны пока не известен, и вторым взвешиванием мы его узнаем. Для этого на левую чашу положим три дублона, а на правую – две кроны. Тогда вес на левой чаше 15 грамм, а на правой – 14 или 16 грамм. Поэтому в случае, когда перевесит левая чаша, вес кроны 7 грамм, а в противном случае – 8 грамм.

7.4. Клетчатый прямоугольник со стороной клетки 1см и площадью 2021 см 2 двумя перпендикулярными разрезами вдоль линий сетки разрезали на четыре прямоугольные части. Докажите, что хотя бы у одной из частей площадь не менее 528 см 2 .

Решение. Простые делители числа 2021 -это 43 и 47, причем $2021 = 43 \cdot 47$. Поэтому целые стороны a и b исходного прямоугольника могут быть либо 1) a = 2021, b = 1, либо 2) a = 47, b = 43. Но, очевидно, случай 1) a = 2021, b = 1 невозможен, т.к. такой прямоугольник невозможно разрезать на клетчатые прямоугольники. Во втором случае самая большая из четырех частей будет иметь площадь не меньше $24 \cdot 22 = 528$.

7.5. Вдоль окружности записали в некотором порядке 25 чисел: 1, 2, ..., 25. Могло ли оказаться так, что любые два соседних числа отличаются либо на 10, либо в несколько (целое число) раз?

Ответ: не могло. **Решение.** Предположим, от противного, что расставить числа можно, и рассмотрим три самых больших простых числа, меньших 25, а именно 17, 19 и 23. Пусть n – любое из этих трех числа. Поскольку n+10>25 и 2n>25, то соседними с n двумя числами на окружности могут быть только n-10 и единица. Таким образом, единица должна быть соседом сразу трех чисел, что, очевидно, невозможно.