- **11.1.** Решите уравнение $2\sin^2 x + 1 = \cos(\sqrt{2}x)$.
- **Ответ:** x=0. **Решение.** Левая часть уравнения ≥ 1 , а правая ≤ 1 . Значит, уравнение равносильно системе: $\sin x = 0$, $\cos \sqrt{2}x = 1$. Имеем: $x = \pi n$, $\sqrt{2}x = 2\pi k$ (n, k целые). Отсюда $n = k \cdot \sqrt{2}$. Поскольку $\sqrt{2}$ число иррациональное, последнее равенство возможно лишь при n = k = 0.
- **11.2**. Дано квадратное уравнение $a^3x^2 + b^3x + c^3 = 0$, имеющее два корня. Докажите, что уравнение $a^5x^2 + b^5x + c^5 = 0$ тоже имеет два корня.

Решение. Имеем $b^6 > 4a^3c^3$, т.к. квадратное уравнение имеет положительный дискриминант. Требуется доказать, что $b^{10} > 4a^5c^5$. Если ac < 0, то последнее неравенство очевидно. Если же $ac \ge 0$, то из неравенства $(b^2)^3 > 4(ac)^3$ в силу монотонного возрастания функции $y = x^{5/3}$ получим $(b^2)^5 > 4^{5/3} \cdot (ac)^5 > 4(ac)^5$.

11.3. Дана окружность единичного радиуса, AB — ее диаметр. Точка M движется по окружности, M_1 — ее проекция на AB. Обозначим $f(M) = AB + MM_1 - AM - BM$. Найдите наибольшее и наименьшее значение функции f(M).

Ответ: наименьшее значение 0; наибольшее $3 - 2\sqrt{2}$.

Решение. Пусть $\angle MAB = \alpha$, $\alpha \in \left[0, \frac{\pi}{2}\right]$. Тогда $f(M) = 2 + 2\cos\alpha\sin\alpha - 2\cos\alpha - 2\sin\alpha$. Обозначим это выражение через $g(\alpha)$. Имеем $g'(\alpha) = 2(\cos^2\alpha - \sin^2\alpha + \sin\alpha - \cos\alpha) = 2(\cos\alpha - \sin\alpha)(\cos\alpha + \sin\alpha - 1)$. Вторая скобка неотрицательна при всех $\alpha \in \left[0, \frac{\pi}{2}\right]$, т.к. для данных α это неравенство следует из неравенства $(\sin\alpha + \cos\alpha)^2 \ge 1$, т.е. $2\sin\alpha\cos\alpha \ge 0$. Таким образом, $g'(\alpha) = 0$ при $\alpha = 0$, $\alpha = \frac{\pi}{2}$ и $\alpha = \frac{\pi}{4}$ ($\alpha = \frac{\pi}{4}$ — единственный корень первой скобки). Учитывая знак производной, получаем, что $g(0) = g\left(\frac{\pi}{2}\right) = 0$ — наименьшее значение, $ag\left(\frac{\pi}{4}\right) = 2 + 1 - 2\sqrt{2} = 3 - 2\sqrt{2}$ — наибольшее.

- **11.4**. Сколько существует пифагоровых треугольников, у которых один из катетов равен 2013? (Пифагоров треугольник это прямоугольный треугольник с целочисленными сторонами. Равные треугольники засчитываются за один.).
- **Ответ:** 13. **Решение.** Из теоремы Пифагора получаем уравнение в целых числах $2013^2 + x^2 = y^2 \Leftrightarrow (y-x)(y+x) = 2013^2 = 3^2 \cdot 11^2 \cdot 61^2$. Это уравнение равносильно системе $\begin{cases} y-x=d_1 \\ y+x=d_2 \end{cases}$, где d_1 , $d_2=\frac{2013^2}{d_1}$ натуральные делители числа 2013^2 . Решение системы $x=\frac{d_2-d_1}{2}$, $y=\frac{d_2+d_1}{2}$ будет целочисленным, т.к. d_1 и d_2 нечетные числа. Чтобы число x было натуральным, делитель d_2 должен быть больше d_1 , т.е. $d_2 > 2013$, $d_1 < 2013$. Количество всех натуральных делителей числа 2013^2 равно (2+1)(2+1)(2+1)=27, как следует из указанного разложения 2013^2 . Из этих делителей только $\frac{27-1}{2}=13$ удовлетворяют условию d>2013 (выкидываем "центральный" делитель d=2013, а остальные делители делятся на пары (d_1,d_2) , где $d_1 \cdot d_2 = 2013$, и из каждой пары выбираем $d_2 > d_1$).

11.5. Имеется 100 палочек длины 1, 0.9, $(0.9)^2$, ..., $(0.9)^{99}$. Можно ли из этих палочек, используя не обязательно все, сложить равнобедренный треугольник? **Ответ:** нельзя. **Решение.** См. задачу 10.5.