Олимпиада школьников «Ломоносов» по математике

Условия, ответы и краткие решения заданий заключительного этапа (7-9 классы, 2010/2011 учебный год)

7.1, 8.1. Сколько раз в течение суток угол между часовой и минутной стрелками составляет 90° ?

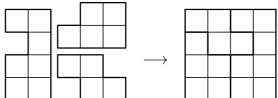
Ответ: 44.

Решение 1. За сутки минутная стрелка делает 24 полных оборота, а часовая — два полных оборота. Следовательно, в течение суток минутная стрелка делает 22 полных оборота вокруг часовой стрелки, а поскольку положение, при котором угол между часовой и минутной стрелками составляет 90°, в ходе каждого такого оборота возникает ровно 2 раза, получаем, что общее число таких положений за сутки равно 44.

Решение 2. Каждый час минутная и часовая стрелки образуют угол 90° дважды, если минутная стрелка не указывает на «12». Если же минутная стрелка указывает на «12», то часовая при этом должна указывать либо на «3», либо на «9»; это возможно 4 раза в сутки (в 3:00, 9:00, 15:00 и 21:00). Таким образом, общее количество искомых положений равно $2 \cdot (24-4) + 4 = 44$.

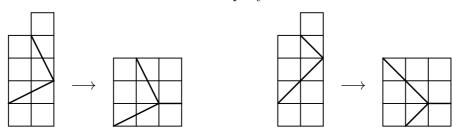
7.2. Разрежьте фигуру, изображённую на рисунке, по клеточкам на три нераспадающиеся части так, чтобы из них можно было сложить квадрат (поворачивать части можно, переворачивать нельзя).

Peweнue. Один из возможных способов разрезать фигуру и сложить квадрат показан на рисунке.



8.2, 9.2. Разрежьте фигуру, изображённую на рисунке, на три части так, чтобы линии разреза не проходили по сторонам клеток и чтобы из частей можно было сложить квадрат. Предложите как можно большее число способов такого разрезания.

Решение. Два возможных способа показаны на рисунке.



7.3, 8.3. Вычислите $(4 \cdot 10^{2011} - 1) : (4 \cdot 3 \dots 33 + 1)$.

Ответ: 3.

Решение. Поскольку

$$4 \cdot 10^{2011} - 1 = 4 \underbrace{0 \dots 00}_{2011} - 1 = 3 \underbrace{9 \dots 99}_{2011},$$

$$4 \cdot \underbrace{3 \dots 33}_{2011} + 1 = 3 \cdot \underbrace{3 \dots 33}_{2011} + \underbrace{3 \dots 33}_{2011} + 1 = \underbrace{9 \dots 99}_{2011} + 1 + \underbrace{3 \dots 33}_{2011} = 1 \underbrace{0 \dots 00}_{2011} + \underbrace{3 \dots 33}_{2011} = 1 \underbrace{3 \dots 33}_{2011},$$
 получаем
$$(4 \cdot 10^{2011} - 1) : (4 \cdot \underbrace{3 \dots 33}_{2011} + 1) = 3 \underbrace{9 \dots 99}_{2011} : 1 \underbrace{3 \dots 33}_{2011} = 3.$$

7.4, 8.4, 9.3. Расшифруйте ребус (разные буквы означают разные цифры) и найдите значение выражения в нижней строке:

$$\Pi \times O = M \\
+ : + \\
O \times H = O \\
" " " " " " "

 $C - O + B = ?$$$

Ответ: 11.

Решение. Заметим, что буква O не может равняться нулю, так как иначе $\Pi=\Pi+O=C$, что невозможно (по условию, Π и C — разные цифры). Поскольку $O\times H=O$ и O:H=O, получаем H=1. В верхней строке записано произведение $\Pi\times O=M$, где Π , O и M — различные цифры. Это возможно лишь в случае, когда цифры Π и O — либо 2 и 3, либо 2 и 4. В последнем случае M=8, и в правом столбце сумма M+O равна 10 (если O=2) или 12 (если O=4); но M+O=B — цифра, а 10 и 12 — не цифры, поэтому этот случай невозможен. Остаётся лишь случай, когда $\Pi=2$, $\Pi=3$,

причём каждый раз значение выражения в нижней строке равно 11.

7.5, 9.1. На какое наименьшее число процентов следует увеличить цену товара, чтобы, продавая его затем с 20%-ной скидкой от новой цены, не остаться в убытке, т. е. чтобы цена товара со скидкой была не меньше первоначальной?

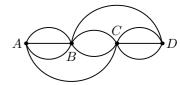
Ответ: 25%.

Peшение. Пусть a — исходная цена товара. Тогда после увеличения цены на k% товар будет стоить $\left(1+\frac{k}{100}\right)a$, а после объявления 20%-ной скидки цена составит $0.8\left(1+\frac{k}{100}\right)a$. Для наименьшего k, удовлетворяющего условию задачи, получаем уравнение

$$0.8\left(1 + \frac{k}{100}\right)a = a,$$

откуда $1 + \frac{k}{100} = 1,25$, поэтому k = 25.

7.6. Города A, B, C и D соединены дорогами так, как показано на рисунке. Сколькими способами можно проделать путь из города A в город D, побывав в каждом городе ровно по одному разу? Omeom: 20.



Peшение. При указанном на рисунке соединении городов дорогами возможны лишь две последовательности городов на пути из A в D с условием, что в каждом городе необходимо побывать ровно по одному разу:

$$A \xrightarrow{3} B \xrightarrow{2} C \xrightarrow{3} D$$
 и $A \xrightarrow{1} C \xrightarrow{2} B \xrightarrow{1} D$,

где над стрелками указано количество дорог, соединяющих соответствующие города напрямую. Следовательно, общее число способов проделать требуемый путь равно $3 \cdot 2 \cdot 3 + 1 \cdot 2 \cdot 1 = 20$.

8.7, 9.4. Число $\frac{1711}{2011}$ обратили в бесконечную десятичную дробь, затем стёрли первую цифру после запятой и обратили получившуюся десятичную дробь в обыкновенную. Какую дробь получили?

 $Omsem: \frac{1022}{2011}.$

Решение. Пусть $\frac{1711}{2011} = 0, \alpha_1 \alpha_2 \alpha_3 \dots$ бесконечная десятичная дробь. При помощи деления столбиком найдём первую цифру после запятой: $\alpha_1 = 8$. После стирания этой цифры получим число

$$0, \alpha_2 \alpha_3 \dots = \alpha_1, \alpha_2 \alpha_3 \dots - \alpha_1 = 10 \cdot \frac{1711}{2011} - 8 = \frac{17110 - 8 \cdot 2011}{2011} = \frac{1022}{2011}.$$

7.7, 8.6, 9.5. Ваня опаздывал в школу и, поднимаясь бегом по эскалатору, не сразу заметил, что в момент, когда он ступил на эскалатор, из его сумки выпал учебник. Обнаружив пропажу, Ваня побежал вниз с удвоенной скоростью и через 20 секунд поднял книжку, оказавшись в этот момент ровно посередине эскалатора. От бега Ваня устал и остаток пути провёл стоя. Сколько времени провёл Ваня на эскалаторе?

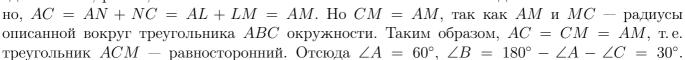
Omeem: 2 мин.

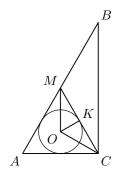
Решение. После обнаружения пропажи Ваня приближался к учебнику в два раза быстрей, чем удалялся от него, следовательно, время, которое прошло с момента потери учебника до его поднятия, равно $2 \cdot 20 + 20 = 60$ секунд. За это время учебник доехал ровно до середины эскалатора, значит, преодоление оставшейся половины подъёма стоя займёт у Вани также 60 секунд, а общее время, проведённое на эскалаторе, составит $2 \cdot 60$ секунд, т.е. 2 минуты.

8.5. Из прямого угла C треугольника ABC проведена медиана CM. Окружность, вписанная в треугольник ACM, касается стороны CM в её середине. Найдите углы треугольника ABC.

Omeem: 30° , 60° , 90° .

Решение 1. Угол $\angle C$ — прямой, т. е. $\angle C = 90^\circ$. Найдём углы $\angle A$ и $\angle B$. Пусть $K,\ L$ и N — точки касания окружности, вписанной в треугольник ACM, со сторонами соответственно $CM,\ AM$ и AC этого треугольника. По условию, MK = CK. Поскольку отрезки касательных к окружности, проведённых из одной точки, равны, то ML = MK = CK = CN и AL = AN. Следователь-





В Решение 2. Пусть O — центр окружности, вписанной в треугольник ACM, K — точка её касания со стороной CM. Отрезок OK является в треугольнике COM одновременно медианой (по условию, CK = CM) и высотой (по свойству касательной к окружности, $OK \bot CM$). Значит, треугольник COM равнобедренный, CO = OM, и углы при его основании равны: $\angle OMC = \angle OCM$. Поскольку O — центр вписанной окружности, то CO и MO — биссектрисы углов $\angle ACM$ и $\angle AMC$ соответственно, поэтому $\angle AMC = 2\angle OMC = 2\angle OCM = \angle ACM$. Значит, треугольник ACM также равнобедренный, $AC = AM = \frac{1}{2}AB$. Следовательно, треугольник ABC — прямоугольный с углами 30° , 60° , 90° .

8.8, 9.7. Петя и Ваня составили из кубиков столбики по четыре кубика в каждом, но действовали по разным правилам: у Пети в каждом столбике есть кубики красного, жёлтого, зелёного и синего цветов, а у Вани — только красного, жёлтого и зелёного цветов. Оказалось, что все

составленные столбики между собой различны, причём ни Петя, ни Ваня, следуя своим правилам, новых столбиков составить не могут. Кто из мальчиков составил больше столбиков и во сколько раз?

Ответ: Ваня составил в полтора раза больше.

Решение. От каждого столбика, составленного Петей, протянем три нити к таким столбикам, составленным Ваней, у которых вместо синего кубика стоит красный, желтый или зелёный, а остальные кубики в столбиках совпадают. Поскольку в каждом столбике, составленном Ваней, есть два кубика одного цвета, он окажется соединён с двумя столбиками, составленными Петей. Значит, утроенное число Петиных столбиков, равно удвоенному числу Ваниных, поэтому Ваня составил в полтора раза больше столбиков, чем Петя.

9.6. Найдите все трёхзначные числа, которые в пять раз больше произведения своих цифр. *Ответ*: 175.

Решение. Пусть \overline{abc} — искомое трёхзначное число. Тогда, по условию, 100a+10b+c=5abc. Отсюда получаем c=5(abc-2b-20a), поэтому c делится на 5. Но c не может равняться нулю, поскольку иначе произведение цифр также равно нулю. Следовательно, c=5. Таким образом, имеем $100a+10b+5=25ab\Leftrightarrow 20a+2b+1=5ab\Leftrightarrow 2(10a+b)=5ab-1$. Число 5ab-1 при делении на 5 даёт остаток 4, поэтому число 10a+b при делении на 5 даёт остаток 2. Это возможно лишь в случае, если b=2 или b=7. Случай b=2 не подходит, так как иначе число 5ab=2(10a+b)+1 должно быть чётным, что неверно. Итак, b=7, и для a получаем уравнение $20a+15=35a\Leftrightarrow a=1$.

9.8. В равнобедренном треугольнике ABC провели биссектрису BP. Докажите, что если $\angle BAC = 100^\circ$, то AP + PB = BC.

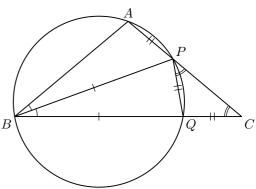
Peшение. Поскольку треугольник ABC равнобедренный, углы при его основании равны:

$$\angle ABC = \angle ACB = \frac{1}{2}(180^{\circ} - \angle BAC) = 40^{\circ}.$$

По условию, BP — биссектриса угла $\angle ABC$, поэтому $\angle ABP = \angle PBC = 20^\circ$. Пусть Q — такая точка на основании BC, что BP = BQ. Тогда в равнобедренном треугольнике BPQ углы при основании PQ равны:

$$\angle BPQ = \angle BQP = \frac{1}{2}(180^{\circ} - \angle PBC) = 80^{\circ}.$$

Заметим, что $\angle BAP + \angle BQP = 100^\circ + 80^\circ = 180^\circ$. Следовательно, точки A, B, P и Q лежат на одной окружности, а поскольку $\angle ABP = \angle PBQ$, получаем AP = PQ. Далее, $\angle APB = 180^\circ - \angle BAP - \angle ABP = 60^\circ$, поэтому



$$\angle CPQ = 180^{\circ} - \angle APB - \angle BPQ = 40^{\circ} = \angle PCQ$$

т. е. углы при стороне CP треугольника CPQ равны. Значит, он также равнобедренный, причём CQ = PQ = AP. Таким образом, AP + PB = CQ + QB = BC, что и требовалось доказать.