
Задание для 7-х – 9-х классов

- **1.** Школьники собрались на экскурсию в музей, находящийся в соседнем городе. Тронувшись от школы в назначенное время, автобус со школьниками поехал с постоянной скоростью $v_1 = 72$ км/ч, рассчитанной так, чтобы прибыть к музею к началу экскурсии. По дороге пошел дождь и водитель был вынужден снизить скорость автобуса до $v_2 = 54$ км/ч. Когда дождь кончился, до пункта назначения осталось проехать расстояние S = 30 км. Чтобы наверстать упущенное время, водитель увеличил скорость автобуса до $v_3 = 90$ км/ч. В результате автобус прибыл к музею точно в запланированное время. Сколько времени τ шел дождь? Ответ приведите в минутах.
- **2.** Для длительного хранения сжиженных газов обычно используют сосуды Дьюара, в которых постоянная температура поддерживается за счет хорошей теплоизоляции сосуда и свободного испарения жидкого газа при атмосферном давлении. В одном из таких сосудов при хранении V=2 л жидкого азота при температуре $t_{\rm a3}=-195$ °C за $\tau_{\rm a3}=24$ часа испарилась ровно половина этого количества азота. После этого жидкий азот удалили из сосуда и положили в сосуд кусочек льда массой m=40 г при температуре 0 °C. Определите, через какое время $\tau_{\rm л}$ лед полностью растает. Удельная теплота парообразования азота r=198 кДж/кг, плотность жидкого азота $\rho=0.8$ г/см³, удельная теплота плавления льда $\lambda=330$ кДж/кг. Температура окружающего воздуха $t_0=20$ °C. Считайте, что скорость поступления теплоты через стенки сосуда пропорциональна разности температур снаружи и внутри сосуда. Ответ приведите в часах, округлив до одного знака после запятой.
- 3. Две электроплитки при параллельном подключении к электрической сети выделяют суммарную мощность N_1 = 900 Вт, а при последовательном подключении к сети суммарную мощность N_2 = 200 Вт. Пренебрегая зависимостью сопротивления плиток от температуры, найдите мощности N_{01} и N_{02} этих плиток по отдельности.

4. Мальчик M и девочка \mathcal{I} стоят в комнате, вид сверху на которую показан на рисунке. На стене, противоположной первоначальному расположению мальчика, висит плоское зеркало с центром в точке O и шириной $2\Delta x$. В некоторый момент времени мальчик начал идти к зеркалу по прямой MO. Двигаясь равноускоренно, он набрал за время $t_0 = 1$ с скорость $v_0 = 1$ м/с, а затем шел с постоянной скоростью v_0 . Через какое время τ после начала движения мальчик увидел в зеркале изображение девочки, если шаг сетки с квадратными ячейками, нанесенной на полу комнаты, $\Delta x = 1$ м?