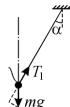
Второй тур

- **1.** С поверхности земли подброшен вертикально вверх небольшой шарик с начальной скоростью $v_0 = 5$ м/с. В тот момент, когда он достиг верхней точки, снизу, с того же места подброшен точно такой же шарик с такой же начальной скоростью. При столкновении шарики слипаются и движутся далее как одно целое. Определите промежуток времени t, в течение которого первый шарик находился в полёте до соприкосновения с поверхностью земли. Сопротивлением воздуха можно пренебречь. Ускорение свободного падения примите равным g = 10 м/с². Ответ округлите до одного знака после запятой.
- **1. Решение.** Выберем систему отсчета с началом на поверхности земли и координатной осью OY, направленной вертикально вверх. Уравнения движения шариков имеют вид: $y_1(t) = v_0t \frac{gt^2}{2}$, $y_2(t) = v_0(t-t_0) \frac{g(t-t_0)^2}{2}$, где $t_0 = \frac{v_0}{g}$ время подъема первого шарика до верхней точки. Из равенства $y_1(t_1) = y_2(t_1)$ находим, что промежуток времени t_1 от момента подбрасывания первого шарика до столкновения шариков $t_1 = \frac{3}{2} \frac{v_0}{g}$, а высота h, на которой произойдет столкновение, $h = \frac{3}{8} \frac{v_0^2}{g}$. Непосредственно перед столкновением скорости каждого из шариков по величине равны $v = \frac{v_0}{2}$, но направлены в противоположные стороны. По закону сохранения импульса сразу после столкновения скорость слипшихся шариков равна нулю. Время их свободного падения на землю с высоты h равно $t_2 = \sqrt{\frac{2h}{g}} = \frac{v_0}{2g}\sqrt{3}$. Общее время полёта первого шарика (т.е. искомый промежуток времени) $t = t_1 + t_2 = \frac{v_0}{2g}(3 + \sqrt{3}) \approx 1,2$ с. **Ответ:** $t = \frac{v_0}{2g}(3 + \sqrt{3}) \approx 1,2$ с.
- **2.** При испытании парашютной системы груз подвесили на двух одинаковых стропах так, что стропы составили с вертикалью одинаковые углы. При этом натяжение каждой стропы составило величину $T = 1000\,\mathrm{H}$. Затем одну из строп перерезали. В этот момент сила натяжения другой

стропы возросла до величины $T_1 = 1200 \, \mathrm{H}$. Пренебрегая размерами груза, определите его массу m. Стропы считайте невесомыми и нерастяжимыми. Ускорение свободного падения примите равным $g = 10 \text{ м/c}^2$. Ответ округлите до целых.

2. Решение. Условие равновесия груза, подвешенного на двух стропах, имеет вид $mg = 2T \cos \alpha$,

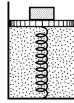


где а – угол, который составляет стропа с вертикалью. В момент, когда одну из строп перерезают, ускорение груза в проекции на направление второй стропы равно нулю.

Отсюда
$$T_1 = mg\cos\alpha$$
 . Решая эту систему уравнений, находим $m = \frac{1}{g}\sqrt{2TT_1} \approx 155$ кг.

Ответ:
$$m = \frac{1}{g} \sqrt{2TT_1} \approx 155 \text{ Kg}.$$

3. Один моль кислорода находится в гладком вертикальном цилиндре под поршнем с грузом.



Поршень связан с дном цилиндра пружиной, коэффициент упругости которой $k = 10^4 \, \text{H/m}$. Расстояние от поршня до дна цилиндра $h_1 = 0.3 \, \text{м}$. После нагрева кислорода до температуры $T_2 = 450 \ \mathrm{K}$ расстояние от поршня до дна цилиндра стало равным $h_2 = 0,4$ м. Какой была температура кислорода T_1 перед его нагревом? Универсальную газовую постоянную примите равной $R = 8.31 \, \text{Дж/(моль·К)}$. Ответ

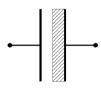
приведите по шкале Кельвина, округлив его до целых.

3. Решение. В исходном состоянии условие равновесия поршня имеет вид: $Mg + p_0S + k\Delta x_1 = p_1S$. Здесь M – масса поршня с грузом, S – площадь поршня, Δx_1 – начальное растяжение пружины, p_0 – атмосферное давление, p_1 – начальное давление кислорода под поршнем. После нагрева кислорода условие равновесия поршня примет вид: $Mg + p_0S + k\Delta x_2 = p_2S$. Здесь Δx_2 – конечное растяжение пружины, p_2 – конечное давление под поршнем. Из уравнения состояния кислорода следует, что

$$p_1V_1=RT_1,\quad p_2V_2=RT_2,\;$$
 откуда $p_2-p_1=R\!\!\left(rac{T_2}{V_2}-rac{T_1}{V_1}
ight)$. С другой стороны $p_2-p_1=rac{k(h_2-h_1)}{S}$. Из

записанных выражений получаем, что $T_1 = T_2 \frac{h_1}{h_2} - \frac{kh_1(h_2 - h_1)}{R} \approx 301$ К.

Otbet:
$$T_1 = T_2 \frac{h_1}{h_2} - \frac{kh_1(h_2 - h_1)}{R} \approx 301 \text{ K}.$$



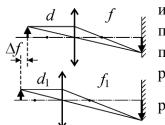
- 4. Пространство между обкладками плоского конденсатора наполовину заполнено диэлектриком, как показано на рисунке. Диэлектрическая проницаемость диэлектрика $\varepsilon = 7$. Найдите разность потенциалов между обкладками конденсатора, если напряженность электрического поля в диэлектрике $E = 500 \, \mathrm{B/m}$. Расстояние между обкладками d = 1 см. Ответ округлите до целых.
- **4. Решение.** Обозначим через E_1 напряженность поля в воздушном зазоре конденсатора. По определению диэлектрической проницаемости $E = \frac{E_1}{c}$ (диэлектрическая проницаемость воздуха

≈1). Учитывая связь между напряженностью поля и разностью потенциалов, получаем $U = E_1 \frac{d}{2} + E \frac{d}{2} = E \frac{d}{2} (\varepsilon + 1)$. Other: $U = E \frac{d}{2} (\varepsilon + 1) = 20$ B.

- **5.** Объектив проекционного аппарата находится на расстоянии f = 10 м от экрана, ширина которого 3 м, а высота 2 м. На экране получено четкое изображение диапозитива, занимающее половину площади экрана, причем центр изображения совпадает с центром экрана. На какое расстояние $\Box f$ и в какую сторону следует переместить проекционный аппарат, чтобы четкое изображение диапозитива заняло всю площадь экрана? Размеры диапозитива 24×36 мм. Объектив проекционного аппарата считайте тонкой линзой. Ответ округлите до целых. Поставьте перед полученным числом знак «+», если проектор нужно удалить от экрана, или знак «-», если проектор нужно приблизить к экрану.
- фа равноценных подхода к решению. В первом подходе фармирование резкого изображения на экране достигается вместе с ним, а формирование резкого изображения на экране достигается путом. 5. Решение. Условие задачи допускает два равноценных подхода к решению. В первом подходе f_1 диапозитива до объектива. Как известно, линейное увеличение \Box , даваемое линзой, может быть рассчитано по формуле $\Gamma = \frac{f}{d}$, где d – расстояние от диапозитива до линзы (объектива), а f – расстояние от линзы до экрана. Из формулы тонкой линзы следует, что оптическая сила линзы $D = \frac{1}{d} + \frac{1}{f} = \frac{1}{f}(\Gamma + 1)$. Оптическая сила остается неизменной, но изменяется расстояние между линзой и экраном. Поэтому справедливо равенство $\frac{1}{f}(\Gamma_0+1)=\frac{1}{f_1}(\Gamma+1)$. Отсюда $\Delta f=f_1-f=f\,rac{\Gamma-\Gamma_0}{\Gamma_0+1}$. Учитывая, что конечное увеличение $\Gamma = \frac{2000}{24} = \frac{3000}{36} \approx 83.3$, а начальное $\Gamma_0 = \frac{\Gamma}{\sqrt{2}} \approx 58.9$, находим, что $\Delta f \approx 4$ м, причем проектор следует удалить от экрана. Поскольку $\Gamma, \Gamma_0 >> 1$, выражение для Δf можно упростить и привести к виду $\Delta f \approx f(\sqrt{2}-1)$.

Ответ:
$$\Delta f = +f \frac{\Gamma - \Gamma_0}{\Gamma_0 + 1} \approx f \left(\sqrt{2} - 1 \right) \approx +4$$
 м, где $\Gamma = \frac{2000}{24} \approx 83.3$; $\Gamma_0 = \frac{\Gamma}{\sqrt{2}} \approx 58.9$.

В рамках второго подхода можно считать, что диапозитив жестко связан с проектором и перемещается вместе с ним, а фокусировка изображения на экран осуществляется за счет



изменения расстояния между объективом и диапозитивом. Пусть d — первоначальное расстояние от диапозитива до объектива, а f — первоначальное расстояние от объектива до экрана, d_1 и f_1 — те же расстояния после перемещения диапозитива вместе с аппаратом (см. рисунок). По формуле линзы имеем $\frac{1}{d} + \frac{1}{f} = D$, $\frac{1}{d_1} + \frac{1}{f_1} = D$, где D –

оптическая сила объектива диапроектора. Искомое смещение аппарата вместе с диапозитивом

 $\Delta f = d_1 + f_1 - (d+f)$. Увеличение, даваемое объективом несмещенного аппарата, $\Gamma_0 = \frac{f}{d}$, увеличение, даваемое объективом смещенного аппарата, $\Gamma = \frac{f_1}{d_1}$, причем $\Gamma_0 = \frac{\Gamma}{\sqrt{2}}$. Приведем промежуточные преобразования: $d_1 = \frac{f_1}{\Gamma}$, $d_1 + f_1 = f_1 \frac{\Gamma+1}{\Gamma}$, $d = f \frac{\sqrt{2}}{\Gamma}$, $d+f=f \frac{\Gamma+\sqrt{2}}{\Gamma}$, $\frac{f_1+d_1}{d_1f_1} = \frac{f+d}{df}$, $f_1 = f \frac{\sqrt{2}(\Gamma+1)}{\Gamma+\sqrt{2}}$. Из записанных выражений, получаем, что $\Delta f = \frac{(\sqrt{2}-1)(\Gamma^2-\sqrt{2})}{\Gamma(\Gamma+\sqrt{2})}f$, причем проектор следует удалить от экрана. По условию $\Gamma = \frac{2000}{24} = \frac{3000}{36} \approx 83,3$. Поскольку $\Gamma >> 1$, последнее выражение можно упростить и привести к виду $\Delta f \approx f \frac{\Gamma-\Gamma_0}{\Gamma_0+1} \approx f(\sqrt{2}-1)\approx 4,14$ м.

Otbet:
$$\Delta f = \frac{(\sqrt{2}-1)(\Gamma^2-\sqrt{2})}{\sqrt{2}\Gamma(\Gamma_0+1)} f \approx f \frac{\Gamma-\Gamma_0}{(\Gamma_0+1)} \approx f(\sqrt{2}-1) \approx 4 \text{ m, fig. } \Gamma = \frac{2000}{24} \approx 83.3 \; ; \; \Gamma_0 = \frac{\Gamma}{\sqrt{2}} \approx 58.9 \; .$$

Поскольку увеличение изображения достаточно велико (Γ , $\Gamma_0 >>1$), ответы при обоих подходах практически совпадают. Поэтому оба подхода следует считать правильными.

- **6.** Груз массой M=1 кг подвешен к неподвижной опоре на легкой пружине. Удерживая груз в положении равновесия, на него кладут брусок массой m=0,2 кг, а затем отпускают. С какой максимальной силой $F_{\rm max}$ брусок будет действовать на груз в процессе движения? Ускорение свободного падения примите равным g=10 м/с. Сопротивлением воздуха можно пренебречь. Ответ округлите до двух знаков после запятой.
- **6. Решение.** Из условия равновесия неподвижно висящего груза $kx_0 = Mg$ следует, что удлинение пружины при этом равно $x_0 = \frac{Mg}{k}$, где k жесткость пружины. Выберем начало отсчета потенциальной энергии в точке, совпадающей с концом недеформированной пружины. Учитывая, что при максимальном растяжении пружины $(x = x_{\max})$ скорость груза с бруском обращается в нуль, запишем закон сохранения энергии: $\frac{kx_0^2}{2} (M+m)gx_0 = \frac{kx_{\max}^2}{2} (M+m)gx_{\max}$. Подставляя сюда x_0 , находим, что $x_{\max} = \frac{(M+2m)g}{k}$. Запишем далее уравнения движения для груза с бруском и отдельно для бруска: (M+m)a = (M+m)g-kx, ma = mg-F. Отсюда сила, с которой груз действует на брусок, $F = \frac{mkx}{M+m}$. Максимальное значение эта сила принимает при $x = x_{\max}$.

Объединяя записанные выражения, получаем, что $F_{\rm max} = mg \, \frac{M+2m}{M+m} \approx 2{,}33 \; {\rm H.}$ Ответ.

$$F_{\text{max}} = mg \frac{M + 2m}{M + m} \approx 2,33 \text{ H}.$$