Задания отборочного этапа олимпиады (5-9 классы).

1. Удаление многих ненужных веществ у животных осуществляется через выделительную систему. А какие вещества, с помощью каких органов или частей тела и зачем выделяют растения?

15 баллов

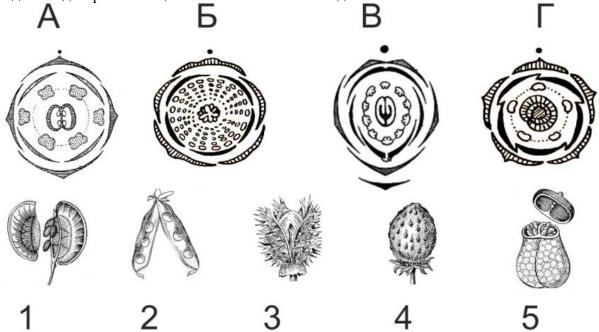
- 2. Какие Вы знаете приспособления деревьев и кустарников для жизни в прибрежной полосе? 15 баллов
- 3. У животного в ответ на раздражение рецепторов кожи возникает двигательный рефлекс, который исчезает после введения препарата X. Однако если после введения препарата провести электростимуляцию двигательного нерва, идущего к мышце, мышца сокращается. Как может действовать этот препарат? Придумайте схему эксперимента, которая сможет точно ответить на этот вопрос.

20 баллов

4. Каких животных можно использовать для переработки органических отходов? Какие особенности названных животных позволяют использовать их в этих целях?

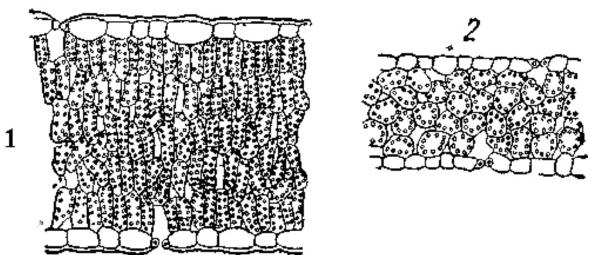
15 баллов

5. У одного из видов сосальщиков промежуточным хозяином является литоральный двустворчатый моллюск. Сосальщики вызывают у моллюсков аномалии в строении зубов замка и изменяют поведение моллюсков. Здоровый моллюск зарывается на несколько сантиметров в грунт. Моллюск, заражённый сосальщиками, держится практически на поверхности грунта. Предположите, кто является окончательным хозяином для этого сосальщика, и обоснуйте своё мнение.

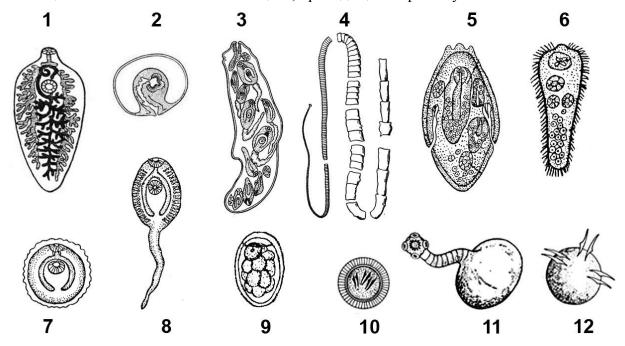

20 баллов

6. У каких членистоногих система кровеносных сосудов развита лучше, а у каких она редуцирована и почему?

15 баллов


Задания заключительного этапа олимпиады (10-11 классы). Вариант 1.

Задание 1. (12 баллов). К каким семействам относятся растения, диаграммы цветков которых приведены на рисунке? Установите соответствие между всеми представленными на рисунке плодами и диаграммами цветков. Назовите эти плоды.


Ответ: А (Пасленовые) -3 (коробочка), 5 (коробочка); Б (Крестоцветные) -1 (стручочек); В (Мотыльковые) -2 (боб); Γ (Розоцветные) -4 (многоорешек, земляничина, или фрага).

Задание 2. (6 баллов). На рисунке приведены поперечные срезы двух листьев одного и того же растения салата Latuca scariola. В чём разница в строении этих листьев? Чем эта разница может быть вызвана?

Ответ: Левый срез имеет большую толщину, в нём хорошо выражен многослойный столбчатый мезофилл. Более крупные клетки эпидермы, более толстая кутикула. На правом срезе меньше толщина листа, в котором нет столбчатого мезофилла, только губчатый, клетки эпидермы мельче, чем на левом, кутикула очень тонкая. Это объясняется разной освещенностью этих листьев: левый лист световой, а правый — теневой.

Задание 3. (6 баллов) Укажите, под какими номерами изображены стадии жизненного цикла свиного цепня или печёночного сосальщика, проходящие в промежуточных хозяевах

Ответ: печёночный сосальщик: 3, 5, недолго 8; свиной цепень: 2 и 12.

Задание 4. (8 баллов). Распределите следующих представителей животного мира по предлагаемым систематическим категориям:

- A Клуша, Larus fuscus
- Б Гигантский броненосец, Priodontes giganteus
- В Полосатый тенрек, Hemicentetes semispinosus
- Г Кукша, Perisorius infaustus

- 1. отряд Насекомоядные, Insectivora
- 2. отряд Ржанкообразные, Charadriiformes
- 3. отряд Воробьинообразные, Passeriformes
- 4. отряд Неполнозубые, Xenarthra

Ответ: 1В; 2А; 3Г; 4Б.

Задание 5. (8 баллов). С целью сравнения численности двух различных популяций водяной ночницы на вокруг открытых прудов, площадью 1,5га (популяция 1) и участке в пойме реки, площадью 1,97 га (популяция 2). Ученые отловили по 80 особей на каждом участке, пометили их меткой, не влияющей на выживаемость, и отпустили. Через 5 дней был произведен второй случайный отлов животных. Из 88 животных, отловленных участке открытых прудов, 22 животных несли метку. Из 95 животных, отловленных в пойме реки, 19 животных были с меткой. Как отличаются между собой популяции 1 и 2 по численности и по плотности.

Решение. а) В результате первого отлова и мечения в первой популяции из N_1 особей оказалось мечеными 80. При втором отлове доля меченых животных должна соответствовать их доле во всей популяции, т.е. $80/N_1 = 22/88$. Следовательно $N_1 = 80 \times 88/22 = 320$ особей - численность популяции 1; плотность популяции 1 - 320/1,5 га = 213 особей/га.

б) В результате первого отлова и мечения во второй популяции из N_2 особей оказалось мечеными 80. При втором отлове доля меченых животных должна соответствовать их доле во всей популяции, т.е. $80/N_2 = 19/95$. Следовательно $N_2 = 80 \times 95/19 = 400$ особей - численность популяции 2; плотность популяции 2 - 400/1,97 га = 203 особи /га.

Ответ: по численности вторая популяция больше первой в 1,2 раза, а по плотности они примерно равны.

Задание 6. (**15 баллов**). Масса мышц 70-килограммового человека равна примерно 35 кг. Кровоток и потребление кислорода в покое практически равны и составляют 20% от общего для организма. Каково потребление кислорода (в г кислорода/100 г массы за мин), если считать, что мышцы утилизируют весь кислород из крови.

Решение. Потребление кислорода рассчитываем исходя из дыхательного объема $0.5\,$ л /мин и частоты дыхания $15\,$ вдохов-выдохов за минуту. Доля кислорода во вдыхаемом воздухе = 21%, в выдыхаемом = 16%. Отсюда количество поглощённого кислорода: 21% - 16% = 5% от прошедшего через лёгкие воздуха. За минуту через лёгкие проходит 0.5*15 = $7.5\,$ л воздуха, а значит поглощается 7.5*0.05 = $0.375\,$ л кислорода. Учитывая долю получаемой крови и потребляемого кислорода, потребление кислорода мышцами в покое = $0.375\,$ л*0.2 = $0.075\,$ мл. Переведем в граммы: $32\,$ г кислорода ($1\,$ моль) – это $22.4\,$ л X г – это $0.075\,$ л. Следовательно, $X=0.107\,$ г $O_2\,$ всеми мышцами в минуту.

Рассчитываем на 100 г массы: (0,107 г/3500г) * 100 г = 0,003 г кислорода/100 г массы в минуту.

Ответ: 0,003 г кислорода/100 г мышечной массы *мин

Задание 7. (15 баллов). Была определена последовательность нуклеотидов матричной нити ДНК участка в середине одного из генов сенной палочки:

5'-ТАТГЦААТЦЦАТТААГАГТТАТТГААТТТЦАГ-3'

С помощью таблицы генетического кода определите последовательность аминокислот, закодированную на этом участке.

Решение. Поскольку дана последовательность матричной цепи, матричная РНК, получаемая в результате транскрипции, будет комплементарна ей, а направление её будет противоположным, т.к. комплементарные цепи нуклеиновых кислот антипараллельны:

начало 5'-ТАТГЦААТЦЦАТТААГАГГТАТТГААТТТЦАГ-3' конец

конец 3'-АУАЦГУУАГГУААУУЦУЦЦАУААЦУУАААГУЦ -5' начало

Таким образом приведённая последовательность будет читаться с правого конца.

Перепишем её в этом порядке:

5'-ЦУГАААУУЦААУАЦЦУЦУУААУГГАУУГЦАУА -3'.

Поскольку эта последовательность из середины гена, в ней нет точки инициации, а вся последовательность должна кодировать непрерывную полипептидную цепочку, т.е. не содержать стоп-кодонов. Разобъём её на триплеты с первого 5'-концевого нуклеотида:

5'- ЦУГ ААА УУЦ ААУ АЦЦ УЦУ <u>УАА</u> УГГ АУУ ГЦА УА -3'.

Она содержит стоп-кодон (подчёркнут), т.е. не удовлетворяет условию.

Попробуем прочесть её со сдвигом на один кодон, т.е. начнём разбиение на триплеты со второго нуклеотида:

5'-Ц УГА ААУУЦААУАЦЦУЦУУААУГГАУУГЦАУА -3'.

Здесь сразу же мы попадаем на стоп-кодон, т.е. такой вариант тоже не удовлетворяет условию. Проведём разбиение на кодоны со второго нуклеотида:

5'-ЦУ ГАА АУУ ЦАА УАА ЦУЦ УУА АУГ ГАУ УГЦ АУА -3'.

Она также содержит стоп-кодон, т.е. не удовлетворяет условию. Отсутствие правильной рамки вероятно, указывает на ошибку в определении последовательности или на прочтение одного из стоп-кодонов (проскальзывание рибосомы). Скорее всего, это будет в первой рамке и последовательность будет: лейцин-лизин-фенилаланин-аспарагиновая к-та-треонин-серин-?-триптофан-изолейцин-аланин

Ответ: лейцин-лизин-фенилаланин-аспарагиновая к-та-треонин-серин-?-триптофан-изолейциналанин.

Задание 8. (30 баллов). У вегетативных клеток одного из видов хламидомонады (*Chlamydomonas*) в норме формируется два жгутика. Ген <u>UNI</u>FLAGELLATA2 (UNI2), отвечающий за нормальное развитие жгутиков, расположен в III хромосоме. При мутации *uni2* вместо двух жгутиков развивается только один длинный жгутик. У клетки, несущей такую мутацию, меняется характер движения: она крутится на месте и не может двигаться в каком-то определенном направлении.

В той же хромосоме на расстоянии 16 морганид от гена *UNI2* расположен ген *INTRAFLAGELLAR TRANSPPORT* (*IFT*), отвечающий за транспорт белков из цитоплазмы к кончику жгутика. Получена чувствительная к температуре мутация ift^{ts} : при t = +16°C жгутики удлиняются нормально, а при t = +28°C жгутики не развиваются совсем.

- **А.** При температуре $+16^{\circ}$ С исследователи провели скрещивание клона хламидомонады с одним жгутиком с двужгутиковым клоном, несущим аллель ift^{ts} (при выращивании этого клона при $t=+28^{\circ}$ С жгутики не развиваются). После образования зигот их перенесли в аквариум для дальнейшего выращивания при $t=+16^{\circ}$ С и низкой интенсивности света. Рассчитайте, каким будет расщепление по фенотипу среди потомков от данного скрещивания. (Примем, что скорость размножения хламидомонад не зависит от генотипа.)
- **Б.** Далее ровно половину объема аквариума затенили ширмой, не пропускающей свет, и установили постоянный источник с высокой интенсивностью освещения. Через некоторое время (достаточное для того, чтобы хламидомонады успели собраться в освещенной части) из освещенной части отобрали пробу и стали выращивать при температуре +28°C. В каком соотношении окажутся особи в этом варианте?
- **В.** Рассчитайте соотношение хламидомонад по фенотипам, если в аналогичном эксперименте температуру поднять до +28°C заранее, а затем отобрать пробу из освещенной половины?

Решение:

Часть А

Хламидомонада большую часть жизненного цикла проводит в гаплоидном состоянии. Из этого следует, что скрещиваемые особи имеют следующие генотипы:

одножгутиковые хламидомонады при t = +16°C

IFT uni2

двужгутиковые хламидомонады при t = +16°C (несут аллель ift^{ts} по условию) ift^{ts} UNI2

При скрещивании образуются гетерозиготы с генотипом IFT ift^{ts} UNI2 uni2.

Зиготы у хламидомонады делится путем мейоза. Все потомки будут гаплоидными. При этом необходимо обязательно учесть, что гены *IFT* и *UNI2* наследуются сцеплено.

По условию расстояние между генами *IFT* и *UNI2* равно 16 морганидам. Это означает, что среди потомков будет наблюдаться 16% рекомбинантных особей и 84% особей без рекомбинации. Среди особей без рекомбинации половина (т.е. 42%) будет иметь генотип *IFT uni2*, а вторая половина (также 42%) – ift^{ts} *UNI2*. После рекомбинации также половина (т.е. 16 : 2 = 8%) хламидомонад будет иметь генотип *IFT UNI2*, а вторая половина – ift^{ts} *uni2*.

Таким образом, будет наблюдаться следующее расщепление:

42 % хламидомонад *IFT uni2* – одножгутиковые при любой температуре.

42% хламидомонад *ift UNI2* – двужгутиковые при t = +16°C, без жгутиков при t = +28°C.

8% хламидомонад *IFT UNI2* – двужгутиковые при любой температуре.

8% хламидомонад ift^{ts} uni2 – одножгутиковые при t = +16°C, без жгутиков при t = +28°C.

Поскольку выращивание по условию проводили при t = +16°C, аллель *ift*^{ts} не имеет фенотипического проявления. Это означает, что по фенотипу будут отличаться только особи, несущие *uni2* (одножгутиковые) и *UNI2* (двужгутиковые).

Соответственно, суммируя, получим:

42 % *IFT uni2* + 8% ift^{ts} *uni2* = **50%** одножгутиковых и

```
42% ift^{ts} UNI2 + 8% IFT UNI2 = 50% двужгутиковых. Или 1 (двужгутиковые) : 1 (одножгутиковые).
```

Часть Б

Если освещать половину объема, то из затененной части в светлую половину соберутся все особи, способные проявить фототаксис. К фототаксису не способны особи с одним жгутиком (не могут плыть в определённом направлении) и особи без жгутиков (вообще не могут плыть). Их распределение останется неизменным. Остальные хламидомонады из затененной половины соберутся в освещенную, и их плотность возрастет в 2 раза.

К фототаксису способны только двужгутиковые хламидомонады. Их 50% от всей популяции. В светлой части их станет в 2 раза больше. Но они будут неодинаковы по генотипу.

Соотношение по генотипам в освещенной части в конце эксперимента станет.

```
42 \times 2 = 84 частей ift^{ts} UNI2 (56%) — двужгутиковые при t = +16°C,
```

без жгутиков при t = +28°C

 $8 \times 2 = 16$ частей *IFT UNI2* (**10,7%**) – двужгутиковые при любой температуре.

42 частей *IFT uni2* (**28%**) – одножгутиковые при любой температуре.

8 частей *ift* uni2 (**5.3%**) — одножгутиковые при t = +16°C.

без жгутиков при t = +28°С.

(суммарно 150 частей, от которых и рассчитано процентное соотношение).

При выращивании при t = +28°C аллель ift^{ts} будет фенотипически проявляться, т.е. в пробе из светлой части окажется:

10,7% двужгутиковых *IFT UNI2*.

28% одножгутиковых *IFT uni*2.

61,3% без жгутиков *ift* t^{ts} t^{ts}

Или

8 (двужгутиковые):

21 (одножгутиковые):

42 (без жгутиков)

Часть В

Если заранее поднять температуру до $+28^{\circ}$ С, то все особи, несущие аллель ift^{ts} не смогут двигаться в сторону освещения. Доля двужгутиковых особей понизится до 8% (только генотип $IFT\ UNI2$). Именно эти особи «сплывутся» в освещённую половину, и их плотность повысится в 2 раза. Остальные перемещаться не могут.

Таким образом, соотношение по генотипам в освещенной части в конце эксперимента станет.

42 частей ift^{ts} UNI2 (38,9%) — двужгутиковые при t = +16°C, без жгутиков при t = +28°C

 $8 \times 2 = 16$ частей *IFT UNI2* (**14,8%**) – двужгутиковые при любой температуре.

42 частей *IFT uni*2 (**38,9%**) – одножгутиковые при любой температуре.

8 частей *ift* t^{ts} *uni2* (**7,4%**) – одножгутиковые при t = +16°C, без жгутиков при t = +28°C.

(суммарно 108 частей, от которых и рассчитано процентное соотношение).

По фенотипу нужно просуммировать безжгутиковых особей ift^{ts} UNI2 и ift^{ts} uni2. Таким образом, распределение окажется

14,8% двужгутиковых *IFT UNI2*.

38,9% одножгутиковых *IFT uni2*.

46,3% без жгутиков *ift*^{ts} UNI2 (56%) + *ift*^{ts} uni2 (5,3%)

Или

8 (двужгутиковые):

21 (одножгутиковые):

25 (без жгутиков).

Задания заключительного этапа олимпиады (5-9 классы).

Задание 1. Что такое устьица? Какие функции они выполняют? Как они устроены и где расположены? (10 баллов)

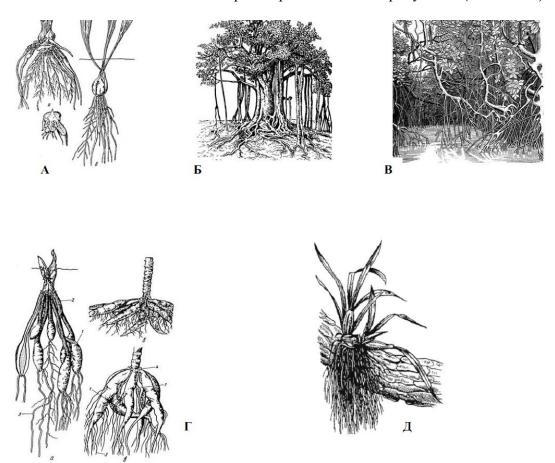
Ответ: устьице — это отверстие (щель), ограниченная двумя замыкающими клетками. Устьица встречаются у всех наземных органов растения, но больше всего у листьев. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. Устьица соединяют внутренние пространства листа с внешней средой. Через устьичные щели происходит выход водяного пара из внутреннего пространства листа (межклетников губчатого мезофилла) в окружающую среду – транспирация, выход из листа образовавшегося при фотосинтезе кислорода и поступление в лист углекислого газа. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие. У злаков строение замыкающих клеток несколько иное. Они представлены двумя удлиненными клетками, на концах которых стенки более тонкие. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на клеточные стенки, и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется шель.

Задание 2. Известно, что все части голосеменного растения тис ягодный ядовиты, за исключением окружающего семя ярко-красного присемянника (ариллуса). Он не только не ядовит, но даже вполне съедобен. Почему именно эта часть семенных покровов лишена токсина, а само семя ядовито? В чем смысл яркой окраски присемянника? (10 баллов)

Ответ: Присемянник (ариллус) лишен токсинов как раз для того, чтобы привлечь потенциальных распространителей семян тиса - птиц и мелких млекопитающих. Делая ядовитым само семя, растение пытается обезопасить его от поедания этими же животными. Биологический смысл яркой окраски присемянника в данном случае заключается в повышении привлекательности (аттрактивности) несъедобных семян тиса.

Задание 3. Объедините растения (из общего списка) в группы по семействам, основываясь на первом указанном (под буквами а,б,в,г): **(10 баллов)**

- а кукуруза,
- б. яблоня,
- в. маргаритка,
- г. морковь,

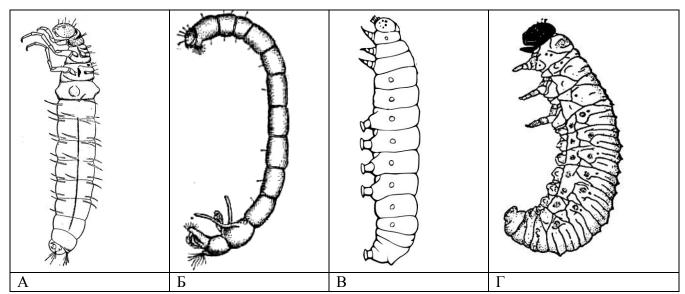

Общий список: астра, укроп, вишня, просо, ячмень, георгин, тмин, ромашка, абрикос, одуванчик, айва, пырей, борщевик, рис, шиповник, петрушка

Назовите эти семейства.

Ответ:

- а. кукуруза, просо, ячмень, пырей, рис семейство Злаковые (Мятликовые).
- б. яблоня, вишня, абрикос, айва, шиповник семейство Розоцветные.
- в. маргаритка, астра, георгин, ромашка, одуванчик семейство Сложноцветные (Астровые).
- г. морковь, укроп, тмин, борщевик, петрушка семейство Зонтичные.

Задание 4. Какие видоизменения корней представлены на рисунках? (10 баллов)



Ответ: А — втягивающие корни луковичных, например, тюльпана, лилий. Б- опорные корни (баньян) В — досковидные опорные корни растений мангровых зарослей. Γ — запасающие корневые клубни (корневые шишки). Д — воздушные корни (орхидеи)

Задание 5. Назовите типы ротовых аппаратов, встречающиеся у насекомых. Для чего они приспособлены и как работают? (10 баллов).

Ответ: грызущий – измельчение твёрдой пищи; колюще-сосущий – высасывание жидкой пищи изпод покровов животных и растений; сосущий – высасывание жидкой пищи из открытых источнокив (нектарники, разлагающаяся органика); лижущий (лижуще-сосущий) – собирание мелких частиц и жидкости с поверхности пищевых объектов.

Задание 6. Найдите среди изображённых животных личинку чешуекрылого:

Ответ обоснуйте. (10 баллов)

Ответ: Личинка чешуекрылого изображена на рисунке В. На это указывает наличие брюшных ложных ножек с присосками на члениках брюшка.

Задание 7. Чем отличаются органы слуха у рыб и лягушек? (10 баллов).

Ответ: У рыб орган слуха состоит только из внутреннего уха. У лягушек кроме внутреннего уха имеется среднее ухо, состоящее из барабанной перепонки и слуховой косточки.

Задание 8. Для многих млекопитающих характерно оставление на различных предметах запаховых меток: различных экскретов и секретов специализированных кожных желез. Зачастую это сопровождается значительными затратами времени и энергии. Каковы функции такого поведения? **(10 баллов)**.

Ответ. Запаховые метки служат для маркировки территории, а в период размножения — для привлечения партнёров. В ряде случаев специфические запаховые метки указывают на готовность самки к спариванию. Затраты энергии на мечение компенсируются снижением частоты конфликтов между особями и нецеленапраленных перемещений при поисках особей противоположного пола.

Задание 9. Перечислите последовательно этапы поступления кислорода воздуха из атмосферы в клетки организма. (10 баллов).

Ответ: Первым этапом является поглощение кислорода из воздуха, осуществляемое дыхательной системой. Дыхательная система человека состоит из двух отделов: воздухоносных путей (нос, глотка, гортань, трахея, бронхи, бронхиолы), через которые поступает воздух, и альвеол легких, где происходит газообмен — насыщение крови кислородом и выведение углекислого газа. Второй этап — перенос кислорода кровью к органам и тканям. Этот перенос осуществляется белком гемоглобином, находящимся в эритроцитах. В капиллярах органов кислород переходит в тканевую жидкость и оттуда в клетки (третий этап).

Задание 10. Какие функции выполняет в организме человека поджелудочная железа? Какие вещества она секретирует? (**10 баллов**).

Ответ: Поджелудочная железа - крупная железа, обладающая внешнесекреторной и

внутреннесекреторной функциями. Внешнесекреторная функция органа реализуется выделением панкреатического сока, содержащего пищеварительные ферменты. Поджелудочная железа является главным источником ферментов для переваривания жиров (панкреатической липазы), белков (трипсина и химотрипсина) и углеводов (альфа-амилазы.) Панкреатический сок клеток содержит и ионы бикарбоната, участвующие в нейтрализации кислого желудочного содержимого, поступающего в двенадцатиперстную кишку. Между дольками железы, секретирующими ферменты, вкраплены многочисленные группы клеток, не имеющие выводных протоков, образующие островки Лангерганса. Островковые клетки функционируют как железы внутренней секреции (эндокринные железы), выделяя непосредственно в кровоток глюкагон и инсулин — гормоны, регулирующие обмен углеводов. Эти гормоны обладают противоположным действием: глюкагон повышает, а инсулин понижает уровень глюкозы в крови.

2013/2014 учебный год КРИТЕРИИ ОПРЕДЕЛЕНИЯ ПОБЕДИТЕЛЕЙ И ПРИЗЁРОВ 1

олимпиады школьников «ЛОМОНОСОВ» по БИОЛОГИИ для 5-9 классов

ОТБОРОЧНЫЙ ЭТАП

ПОБЕДИТЕЛЬ:

От 80 баллов включительно и выше.

ПРИЗЁР:

От 65 баллов до 79 баллов включительно.

ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП

ПОБЕДИТЕЛЬ (диплом І степени):

От 85 баллов включительно и выше.

ПРИЗЁР (диплом II степени):

От 76 баллов до 84 баллов включительно.

ПРИЗЁР (диплом III степени):

От 69 баллов до 75 баллов включительно.

¹ Утверждены на заседании жюри олимпиады школьников «Ломоносов» по биологии.