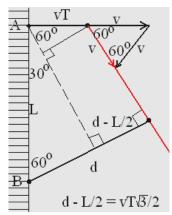

I (очный) этап Всесибирской открытой олимпиады школьников Физика 13 ноября 2016 г. Решения и критерии оценки 11 класс

Рекомендации для жюри


Каждая задача оценивается из 10 баллов. Участники олимпиады могут предложить полные и верные решения, отличные от приведённых ниже. За это они должны получить полный балл. Частичное решение или решение с ошибками оценивается, ориентируясь на этапы решения, приведённые в разбалловке. При этом верные выводы из ошибочных допущений не добавляют баллов. Если какой-то этап решения не полный, или частично правильный, то он оценивается частью баллов за этап. Если в решении участника олипиады предложенные этапы объединены как один, то оценка проводится из суммарного балла. Наличие ответа без решения не оценивается. В решении в скобках могут быть указаны баллы, они повторяются в таблице разбалловки. Чтобы обеспечить сопоставимость результатов проверки, важно придерживаться этих рекомендаций и буквы и духа предложенных критериев оценки. В комментариях могут быть указания на иные варианты решения или другие замечания, полезные при проверке.

Для удобства работы жюри, каждая задача представлена на отдельной странице.

Решения и критерии оценки 11 класс

1. Два катера с одинаковой скоростью v отплыли от морского берега: первый из точки A перпендикулярно берегу, второй — из точки B под углом 30° к берегу. Расстояние между A и B равно L. Насколько позже отплыл второй катер из пункта B, если наименьшее расстояние, на которое катера сблизились, d=1,5L?

Возможное решение

- 1. Пусть искомое время запаздывание Т. К моменту отплытия второго катера первый сместится на расстояние vT из A по перпендикуляру к берегу, а второй в этот момент ещё в точке В <1 балл>.
- 2. Рассмотрим происходящее в системе отсчёта второго катера <2 балла>.
- 3. Скорость первого катера в этой системе отсчёта (из векторного сложения скоростей), равна по величине v и направлена под углом 30° к берегу

(красная стрелка на рис.) <2 балла>.

- 4. Траектория первого катера в системе отсчёта второго прямая, направленная по этой скорости, а наименьшее расстояние d это длина перпендикуляра, опущенного из B на эту траекторию <2 балла>.
- 5. Спроектируем точку A на отрезок d. Так как $\sin 30^{\circ} = 1/2$, $\sin 60^{\circ} = \sqrt{3}/2$, $\cot L/2 = vT\sin 60^{\circ} = vT\sqrt{3}/2 < 2$ балла>.
- 6. Откуда искомое $T = (2d L)/\sqrt{3}v = 2L/\sqrt{3}v < 16$ алл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Положение катеров в момент отплытия 2-го		1
2	Идея перехода в систему отсчёта одного из		2
	катеров		
3	Нахождение относительной скорости		2
4	Условие минимальности расстояния		2
5	Вывод геометрических соотношений	$d - L/2 = vT\sqrt{3/2}$	2
6	Нахождение времени запаздывания	$T = 2L/\sqrt{3}v$	1

Комментарий Приведённое общее решение верно при $L/2 \le d \le 2L$. Если нарушена нижняя граница, то T отрицательно; если верхняя, то перпендикуляр пересечёт траекторию до момента отправления второго катера. По условию d = 1,5L и с этими тонкостями ни участникам, ни жюри можно не разбираться. Замечание однако позволяет понять, где участник ошибся, проводя построения с d вне указанного интервала.

Решения и критерии оценки 11 класс

2. В сосуде объёма V при давлении P и температуре T находится смесь двух газов с молярными массами μ_1 и μ_2 . Найдите отношение числа молей второго газа к числу молей первого, если известна суммарная масса газов m.

Возможное решение

- 1. Из уравнения состояния идеального газа $PV = (v_1 + v_2)RT < 26$ алла>.
- 2. Выразим общую массу m через число молей v_1 и v_2 первого и второго газа $m = \mu_1 v_1 + \mu_2 v_2 < 26$ алла>.
- 3. Тогда получим $(\mu_1 \nu_1 + \mu_2 \nu_2)/(\nu_1 + \nu_2) = mRT/PV < 2$ балла>.
- 4. Для искомого $x = v_2/v_1$ имеем $(\mu_1 + \mu_2 x)/(1 + x) = mRT/PV < 1 балл>.$
- 5. Откуда $x = v_2/v_1 = (\mu_1 PV mRT)/(mRT \mu_2 PV) < 3$ балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Уравнение состояния газа	$PV = (v_1 + v_2)RT$	2
2	Выражение общей массы через число молей	$m = \mu_1 \nu_1 + \mu_2 \nu_2$	2
3	Соотношение для «среднего» µ	$(\mu_1 \nu_1 + \mu_2 \nu_2)/(\nu_1 + \nu_2) =$ mRT/PV аналог	2
4	Получение уравнения для $x = v_2/v_1$	$(\mu_1 + \mu_2 x)/(1+x) = mRT/PV$	1
5	Нахождение искомого отношения	$x=(\mu_1PV-mRT)/(mRT-\mu_2PV)$	3

Решения и критерии оценки 11 класс

3. Соприкасающиеся цилиндры радиусом г и R и массой m и M скользят по горизонтальной плоскости. На меньший цилиндр давят вправо с горизонтальной силой F. Найдите силу давления со стороны одного цилиндра на другой. Трения нет.

Возможное решение

- 1. Ускорения одинаковы и направлены по горизонтали <1 балл>.
- 2. Сила нормального давления N (искомая!) направлена по отрезку соединяющему центры <1 балл>.
- 3. 2-й закон Ньютона для движения по горизонтали в применении к каждому из цилиндров: $mA = F Ncos\alpha$; $MA = Ncos\alpha < 2 + 2$ балла>.
- 4. Из теоремы Пифагора находим $cos\alpha = 2\sqrt{Rr}/(R+r) < 2$ балла>.
- 5. Окончательно N= MF/(M + m) $cos\alpha$ = MF(R + r)/ $2\sqrt{Rr}$ (M + m) <2 балла>.

Разбалловка по этапам

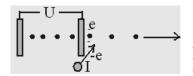
	Этапы решения	соотношения	Балл
1	Связь ускорений		1
2	Направление искомой силы N		1
3	2-й закон Ньютона в применении 1	$mA = F - N\cos\alpha; MA = N\cos\alpha$	2+2
	и 2 цилиндру		
4	Нахождение cosα	$\cos\alpha = 2\sqrt{Rr}/(R+r)$	2
5	Нахождение искомой силы	$N = MF/(M + m)cos\alpha =$	2
		$MF(R + r)/2\sqrt{Rr(M + m)}$	

Комментарий Приведённое решение предполагает, что оба цилиндра соприкасаются с полом, что по существу указано в первом предложении условия. Вывода критерия движения без отрыва от пола $Nsin\alpha \leq Mg$ или его аналога для F не требуется, поэтому и не оценивается баллами.

Решения и критерии оценки 11 класс

4. Протон со скоростью v налетает издалека на первоначально неподвижный незакреплённый протон. Найдите наибольшее возможное ускорение протонов. Рассчитайте величину ускорения при значении $v=10^6$ м/с. Заряд и масса протона $e=1,6\cdot10^{-19}$ Кл, $m=1,67\cdot10^{-27}$ кг, постоянная, входящая в закон Кулона $k=1/4\pi\epsilon_0=9\cdot10^9$ единиц СИ. Достаточно точности в 10%.

Возможное решение


- 1. Наибольшее ускорение $a = ke^2/mr^2 < 1$ балл>
- 2. Достигается при минимальном расстоянии r <1балл>.
- 3. Наибольшим сближение будет при движении по прямой <1>
- 4. При наибольшем сближения скорости протонов и одинаковы <1балл>.
- 5. Из сохранения импульса 2mu = mv < 1 балл>.
- 6. Из сохранения энергии $mv^2/2 = 2mu^2/2 + ke^2/r < 1$ балл>.
- 7. Откуда $a = \text{mv}^4/16\text{ke}^2 < 2$ балла>
- 8. Результат численного расчёта $a \approx 0.45 \cdot 10^{24}$ м/с² <2 балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Выражение для ускорения	$a = ke^2/mr^2$	1
2	Максимальность <i>а</i> при минимуме r		1
3	и движении по прямой		1
4	Равенство скоростей при наиболь-		1
	шем сближении		
5	Сохранение импульса	2mu = mv	1
6	Сохранение энергии	$mv^2/2 = 2mu^2/2 + ke^2/r$	1
7	Общее выражение ускорения	$a = \text{mv}^4/16\text{ke}^2$	2
8	Числовое значение	$a \approx 0.45 \cdot 10^{24} \text{ m/c}^2$	2

Комментарий За восьмой этап 2 балла при правильной степени 10 и множителе в интервале от 0,4 до 0,5. Иначе 0 баллов. Вес оценки за число отвечает физической значимости того факта, что при столкновениях частиц возникают колоссальные по величине ускорения.

Решения и критерии оценки 11 класс

5. В ионном ракетном двигателе однократно заряженные положительные ионы массой $M = 6,5 \cdot 10^{-26}$ кг разгоняются на ускоряющем промежутке от почти ну-

левой скорости напряжением $U = 5 \cdot 10^6 \ B$. При вылете ионы нейтрализуются током $I = 50 \ A$ от вспомогательного источника электронов и летят далее свободно. Какова сила тяги двигателя, если импульс электронов много меньше импульса ионов? Элементарный заряд $e = 1,6 \cdot 10^{-19} \ Kn$.

Возможное решение

- 1. Кинетическая энергия получаемая ионами $Mv^2/2 = eU < 1$ балл>.
- 2. Тогда их импульс на выходе $p = Mv = (2MeU)^{1/2} < 1$ балл>.
- 3. Если за единицу времени вылетает ν ионов, то сила тяги равна передаче импульса за единицу времени, то есть $F = \nu M \nu < 2$ балла>.
- 4. При нейтрализации на каждый ион приходится один электрон, поэтому ток нейтрализации I = ev, а v = I/e < 2 балла>.
- 5. Отсюда получаем окончательное выражение $F = I(2UM/e)^{1/2} < 2$ балла>.
- 6. При числовых данных условия $F \cong 100 \text{ H} < 2 \text{ балла} >$.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Связь кинетической энергии и напряжения	$Mv^2/2 = eU$	1
2	Нахождения импульса иона на выходе	$p = Mv = (2MeU)^{1/2}$	1
3	Нахождение силы через v	F = vMv	2
4	Нахождение у по току нейтрализации	I = ev; v = I/e	2
5	Нахождение F в общем виде	$F = I(2UM/e)^{1/2}$	2
6	Числовое значение для силы тяги	F ≅ 100 H	2

Комментарий Замечания полезные для разбора решения с учащимися. Числа относительно условны. Если рассчитать мощность, то N = UI = 250 MBт! Но вот то, что сила тяги относительно мала это верно и для реальных двигателей. Достоинство ионных двигателей в том, что при наличии источника энергии они могут работать весьма долго. Принудительная нейтрализация необходима при работе в космосе. Без неё космический аппарат быстро приобрёл бы отрицательный заряд и ионы перестали бы улетать.