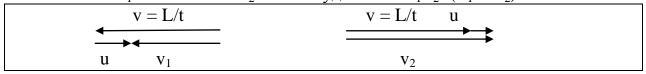
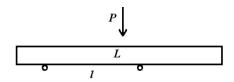
Заочный тур 2014-2015 9 класс


Задача оценивается в 5 баллов только при наличии полного решения и правильного ответа в указанных в условиях единицах. Если ответом в задаче является несколько величин, то их числовые значения приводятся в ответе через точку с запятой. Ответ должен быть внесён в таблицу. При невыполнении любого из требований за задачу ставится 0 баллов. Без представления таблицы работа не проверяется.

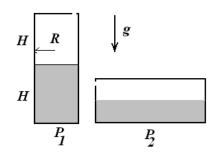
1. Вдоль железной дороги в противоположных направлениях движутся два автомобиля. Первый едет от станции A до станции B время $T_1 = 30$ минут, а второй – от B до A время $T_2 = 20$ минут. Однако, оба они за одинаковое время t = 16 с проехали мимо поезда длины L = 400 м. Каково в метрах расстояние между станциями? Скорости автомобилей и поезда постоянны.


Возможное решение

Пусть скорости автомобилей v_1 и v_2 , а поезда u. Тогда для первого автомобиля, едущего навстречу поезду, время проезда $t = L/(v_1 + u)$. Таково же время проезда и для второго автомобиля, обгоняющего поезд, и $t = L/(v_2 - u)$. Отсюда $L/t = v_1 + u$ и $L/t = v_2 - u$, это можно получить и сразу, исходя из равенства скоростей относительно поезда (см. схему внизу).

Если искомое расстояние x, то: $v_1 = x/T_1$; $v_2 = x/T_2$. Таким образом $L/t = x/T_1 + u$ и $L/t = x/T_2 - u$. Откуда $x = 2LT_1T_2/t(T_1 + T_2) = 3600$ м.

Ответ: 3600 м.



2. Однородная балка веса P = 800 Н и длины L = 2,4 м лежит горизонтально на двух стержнях. Какова наибольшая возможная нагрузка на один из стержней (в ньютонах), если расстояние между ними l = 1,6 м? 1 м?

Решение

Нагрузка на стержни зависит от положения центра балки. Пусть он находится на расстоянии х от левого стержня. Тогда из равновесия моментов сил относительно этого стержня имеем Nl=Px и N=Px/l. Наибольшему возможному х отвечает наибольшая нагрузка N на правый стержень. В первом случае $x_{max}=L/2$ (девый конец балки дошёл до левого стержня, а центр балки находится между стержнями). Во втором случае $x_{max}=l$ (центр балки дошёл до правого стержня, а левый конец балки левее левого стержня). Итак в первом случае N=PL/2l=600 H, а во втором N=P=800 H.

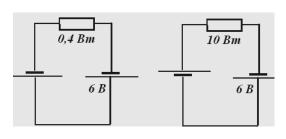
Ответ:600 Н; 800 Н.

3. Бочка высоты 2H и радиуса R = H/2 заполнена неизвестной жидкостью наполовину. При этом большее давление в жидкости $P_1 = 1,21 \cdot 10^5$ Па. Когда бочку положили на бок, то наибольшее давление стало $P_2 = 1,13 \cdot 10^5$ Па. Найдите давление воздуха P в паскалях.

Решение

 $P_1 = P + \rho g H$; $P_2 = P + \rho g R = P + \rho g H/2$; $P = 2P_2 - P_1$. = 1,05·10⁵ Па. Ответ: 1,05·10⁵ Па.

4. По горизонтальному столу со скоростью $v_o = 12$ м/с двигалось тело. Слетев с него, оно ударилось о пол со скоростью v = 13 м/с. Какое время (в секундах) тело пролетело до удара? Ускорение свободного падения g окрулить до 10 м/с². Влиянием воздуха пренебречь.

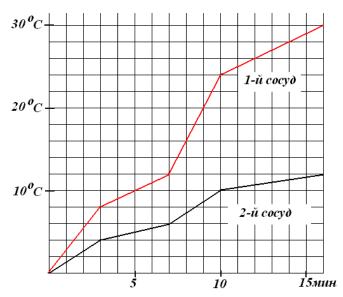

Решение

$$v^2 = v_o^2 + (gt)^2$$
; $t = 0.5$ c.

Ответ: 0,5 с.

5. Основное свойство радиоактивного распада в том, что доля распашихся за определённое время ядер не зависит от их количества. За один год распалось 36% от исходного количества ядер. Какой процент ядер распадается за 1/2 года? За 2 года? Ответ округлите до целого числа процентов.

Ответ: 20%; 59%.

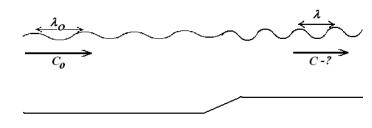


6. К резистору подключили две батареи с малым внутренним сопротивлением. В зависимости от схемы соединения на резисторе выделяется мощность $N_1 = 0.4$ Вт или $N_2 = 10$ Вт. Напряжение на правой батарее $U_1 = 6$ В. Какими могут быть значения напряжения на левой? Ответ в вольтах.

Решение

Общая формула мощности $N=RI^2$. В правой схеме напряжения батарей складываются. Так как $U_1+U_2=RI$, то $N_2=(U_1+U_2)^2/R$. В левой схеме напряжения батарей встречные и направление тока зависит от того, на какой батарее большее напряжение. Поэтому возникнут два решения! Для мощности в любом случае $N_1=(U_1-U_2)^2/R$. Тогда $N_2/N_1=(U_1+U_2)^2/(U_1-U_2)^2=25$ и $(U_1+U_2)/(U_1-U_2)=\pm 5$. Откуда $U_2=4$ В или $U_2=9$ В.

Ответ: 9 В; 4 В.



7. В двух сосудах находилась вода с начальной температурой 0° С. В них на 3 минуты включили нагреватели с одинаковой мощностью. Затем мощности стали менять. Зависимость температуры воды от времени в этих сосудах указана на графике. Известно, что наименьшая мощность нагревателя во втором сосуде N_{min} = 25 Вт. Какова наибольшая мощность нагревателя в первом сосуде? Теплообменом с окружающей средой можно пренебречь. Ответ в ваттах.

Решение

По участку графиков нагрева за время от 0 до 3 минут можно сделать вывод, что теплоёмкости сосудов отличаются в 2 раза: $N_o\Delta t = C_1\Delta T_1 = C_2\Delta T_2$. Мощность $N = C\Delta T/\Delta t$ можно определить по наклону графика. Для 2-го сосуда наибольший наклон совпадает с наклоном начального участка, который в 4 раза больше наиболее пологого участка. Поэтому наибольшая мощность для нагревателя во 2-м сосуде $N_o = 4N_{min} = 100$ Вт. Для первого сосуда наибольший наклон $\Delta T/\Delta t$ достигается в интервале времени от 7 до 10 минут и он наклон в 1,5 раз больше начального. Таким образом искомая наибольшая мощность $N = 1,5N_o = 150$ Вт у нагревателя в 1-м сосуде.

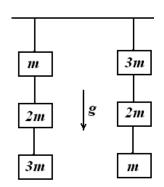
Ответ: 150 Вт.

8. Скорость волн на воде зависит от глубины дна. Пока волна идёт по глубокой воде, расстояние между вершинами волн $\lambda_o = 10$ м, а её скорость $C_o = 20$ м/с. Когда она проходит по мелководью, расстояние между вер-

шинами $\lambda = 6$ м. Какова тогда скорость волны на мелководье?

Решение

 $\lambda_{\rm o}/{\rm C_o}={\rm T}=\lambda/{\rm C};~{\rm C}=(\lambda/\lambda_{\rm o}){\rm C_o}=0.6~{\rm C_o}=12~{\rm m/c}.$


Ответ: 12 м/с.

9. С первого этажа многоэтажного дома поднимаются два жильца. Оба идут по лестнице с постоянными скоростями. Первый начал подъём на 30 секунд раньше второго. Но до второго этажа он добрался раньше второго лишь на 28 секунд. На каком этаже второй жилец догонит первого?

Решение

 $T_1 + h/v - h/u = T_2; \ T_1 + H/v - H/u = 0; \\ N = H/h + 1 = T_1/(T_1 - T_2) + 1 = 16.$

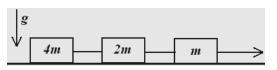
Ответ: 16.

10. Грузы, одинаковых размеров и указанных на рисунке масс, связаны одинаковыми упругими резинками и подвешены к потолку на таких же резинках. Тщательные измерения показали, что средний груз справа выше на h = 8 мм среднего груза слева. Насколько миллиметров нижний груз справа выше нижнего груза слева?

Решение

Сила натяжения пропорциональна удлинению резинки T = kx. Самые верхние резинки растягиваются одинаковой силой, отвечающей суммарной массе 6 m. Поэтому $h = x_2 - x_1$, где x_2 и x_1 удлинение вторых сверху резинок справа и слева. $kx_2 = 5$ mg, $kx_1 = 3$ mg. Для нижних резинок имеем $kx_3 = 3$ mg, $kx_4 = mg$. Тогда искомое $H = x_2 - x_1 + x_3 - x_4 = 2h = 16$ мм.

Ответ: 16 мм.


11. В качестве 11 задачи представьте заполненную таблицу ответов, если задача не решена оставьте строчку пустой. Будьте внимательны, при неправильном или неполном ответе в таблице решение уже не проверяется!

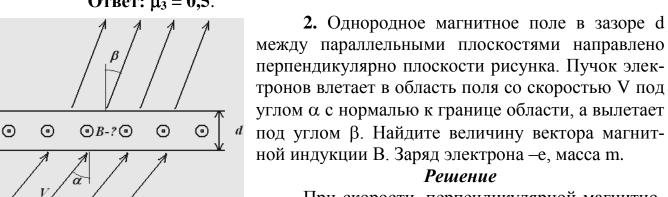
Ответы
3600 м (здесь и далее указанные в условии еди-
ницы измерения могут быть опущены)
600 H; 800 H
1,05·10 ⁵ ∏a
0,5 c
20%; 59%
9 B; 4 B
150 BT
12 м/с
16
16 мм

Заочный тур Всесибирской открытой олимпиады школьников 2014-2015

11 класс

Задача оценивается в 5 баллов только при наличии полного решения и правильного ответа в указанных в условиях единицах. Ответ в общем виде представляется в системе СИ. Если ответом в задаче является несколько величин, то их числовые значения приводятся в ответе через точку с запятой. Ответ должен быть внесён в таблицу. При невыполнении любого из требований за задачу ставится 0 баллов. Без представления таблицы работа не проверяется.

1. Три тела, указанных на рисунке масс, связаны нерастяжимыми невесомыми нитями. → Под действием силы F, приложенной к телу массы т, система двигалась вправо. Коэффици-


енты трения тела массы m c полом $\mu_1=0,4$, a тела массы 2m — $\mu_2=0,2$. Найдите наименьшее значение коэффициента трения тела массы 4m с полом, при котором нити останутся натянутыми после прекращении действия силы F.

Решение

Если нити натянуты, то ускорения тел одинаковы, из 2-го закона Ньютона в применении ко всей системе $a = (\mu_1 m_1 + \mu_2 m_2 + \mu_3 m_3)g/(m_1 + m_2 + m_3)$. Из 2-го закона Ньютона в применении к m_1 : $m_1 a = \mu_1 m_1 g + T_1$ находим натяжение правой нити $T_1 = m_1 a - \mu_1 m_1 g$, а в применении к m_3 : $m_3 a = \mu_3 m_3 g - T_2$ и натяжение левой нити $T_2 = \mu_3 m_3 g - m_3 a$. Условие, что обе нити натянуты, положительность натяжений, то есть $T_1 \ge 0$ и $T_2 \ge 0$. Эти условия после подстановок значений масс дают для μ_3 неравенства: $\mu_3 \ge (6\mu_1 - 2\mu_2)/4 = 0.5$ и $\mu_3 \ge$ $(\mu_1 + 2\mu_2)/3 = 8/30$. Так как второе число меньше, то ответ $\mu_3 = 0.5$.

Ответ: $\mu_3 = 0.5$.

R

При скорости, перпендикулярной магнитно-

му полю, траектория электрона окружность. Из 2го закона Ньютона и выражения магнитной силы

имеем $mV^2/R = eVB$, откуда радиус R = mV/eB. Рассмотрим дугу окружности между граничными плоскостями. Радиусы, проведённые к точкам пересечения границ, перпендикулярны скоростям, то есть образуют с граничными плоскостями углы α и β . Тогда $d = R(sin\alpha - sin\beta)$; а $B = mV(sin\alpha - sin\beta)/ed$.

OTBET: $B = mV(sin\alpha - sin\beta)/ed$.

3. В начальный момент покоящиеся позитрон и два протона находятся в вершинах равностороннего треугольника. Их одновременно отпускают и они разлетаются. Найдите отношение кинетических энергий позитрона и одного из протонов после разлёта. Масса позитрона равна массе электрона, а заряд равен заряду протона. Значение масс протона и электрона отыщите в литературе.

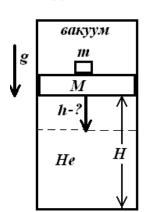
Решение

Масса протона примерно в 2000 раз больше массы электрона, а то есть и позитрона. Поэтому разлёт можно считать происходящим в два этапа. 1-й этап. Позитрон быстро улетает на очень большое расстояние, а протоны остаются практически на месте. 2-й этап. Покинутые позитроном протоны разлетаются друг от друга уже без влияния позитрона. Из применения сохранения энергии к 1-му этапу имеем $K_{\text{позитрон}} = 2e^2/4\pi\epsilon_0 r$; а в применении к 2-му этапу $2K_{\text{протон}} = e^2/4\pi\epsilon_0 r$. Откуда $K_{\text{позитрон}}/K_{\text{протон}} = 4$.

Ответ: 4.

4. Отыщите в справочной литературе плотности золота и серебра при 20°C. У какого из веществ объём приходящийся на один атом больше? На какую долю в процентах? Результат округлите до одной значащей цифры.

Решение


 $\mu_{Ag} = 107.88; \ \mu_{Au} = 197.2; \ N_A V_{Ag} = \mu_{Ag}/\rho_{Ag} = 10.28 \ \text{cm}^3; \ N_A V_{Au} = \mu_{Au}/\rho_{Au} = 10.21 \ \text{cm}^3; \ \Delta V/V = 0.7\%.$

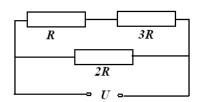
Ответ: У серебра больше на 0,7%.

5. Шарик массы m после упругого удара с исходно неподвижным телом отскочил назад со скоростью u = 0,99v, где v его начальная скорость. Какова масса тела?

Решение

Из сохранения импульса с учётом направлений: m(v + u) = Mw. Из сохранения энергии: $m(v^2 - u^2) = Mw^2$. Возведём первое уравнение в квадрат и поделим на второе, тогда M = m(v + u)/(v - u) = 199m.

Ответ:199т.


6. Поршень массы М удерживается в равновесии гелием на высоте Н от дна цилиндра. На поршень сверху положили груз массы т. Насколько после этого опустится поршень? Над поршнем вакуум, трения со стенками цилиндра нет, теплобменом гелия с цилиндром и поршнем пренебречь.

Решение

Внутренняя энергия гелия U = (3/2)vRT = (3/2)PV. В начальном состоянии тогда $U_o = (3/2)P_oV_o = (3/2)MgH$, а в конечном U = (3/2)(M+m)g(H-h). При отсутствии теплообмена

приращение внутренней энергии гелия равно убыли потенциальной энергии поршня с грузом в поле тяжести: $U-U_o=(M+m)gh$. Откуда h=3mH/5(M+m).

Ответ: h = 3mH/5(M + m).

f мВт

10

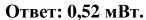
7. Найдите отношение максимальной мощности, выделяющейся на одном из резисторов, к минимальной. Сопротивления резисторов указаны на схеме.

Решение

 $U^2/2R:(1/4)U^2/4R=8.$

Ответ: 8.

8. Для тепловой изоляции используют многослойный материал, состоящий из листов тонкой фольги, разделённых вспененным веществом. В стационарном режиме поток тепла q через один слой зависит от температур фольги на его границах t_1 и t_2 следующим образом:

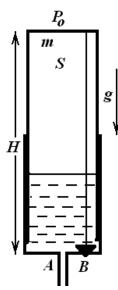

$$q = f(t_2) - f(t_1),$$

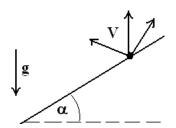
где функция f(t) задана на графике. Определите поток тепла через 50 слоёв, если температуры фольги на границах 9°C и 20°C. Ответ привести в милливаттах.

Решение

В стационарном режиме поток тепла через любой из 50 слоёв один и тот же. Тогда искомый поток $q = \Delta f_1 = \Delta f_2 \dots = \Delta f_{50}$, где Δf_k приращение функции f на k-том слое. Заметим, что

 $\Delta f_1 = f(t_1) - f(9^{\circ}C)$, $\Delta f_2 = f(t_2) - f(t_1)$, $\Delta f_3 = f(t_3) - f(t_2)$, ... $\Delta f_{50} = f(20^{\circ}C) - f(t_{49})$, где t_1 , t_2 , ... t_{49} температуры на 49 внутренних листах фольги. Эти температуры заранее неизвестны, но если сложить все приращения, то неизвестные слагаемые сократятся, а в сумме получится $\Delta f = f(20^{\circ}C) - f(9^{\circ}C)$, а тогда искомый поток $q = \Delta f/50 = (f(20^{\circ}C) - f(9^{\circ}C))/50 = 0,52$ мВт.




9. Цилиндрическая труба массы $m=100~\rm kr$, высоты $H=2,2~\rm m$ и сечения $S=0,1~\rm m^2$ закрыта сверху. Она вставлена в открытый сверху цилиндр и может двигаться в нём без трения. Исходно труба заполнена воздухом при атмосферном давлении $P_o=10^5~\rm Ha$. По трубке A в дне цилиндра начинают медленно закачивать жидкость, она не проходит через стык нижнего края трубы и дна цилиндра. При поступлении некоторого объёма жидкости V труба чуть приподнимается и открывается клапан B в дне цилиндра. Найдите объём V в литрах. Температура неизменна. Считать ускорение свободного падения $g=10~\rm m/c^2$.

Решение

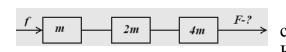
 $A \coprod B$ Условие отрыва трубы $PS = mg + P_oS$. Нахождение конечного объёма воздуха $V_k = SH - V$. Выражение неизменности температуры воздуха $PV_k = P_oSH$. Получение уравнения для $V: P_oSH = (P_o + mg/S)(SH - V)$; нахождение V, формула и число $V = mgHS/(P_oS + mg) = 20$ л.

Ответ: 20 л.

10. На склоне горы с углом наклона α взрывается бомба. Осколки бомбы летят во все стороны с одинаковой начальной скоростью V. Через какое время после взрыва и на каком расстоянии от места взрыва упадёт самый последний осколок? Ускорение свободного падения g.

Решение

Для времени падения на наклонную плоскость не существенно движение вдоль неё. Перемещение по перпендикуляру к наклонной плоскости за время полёта равно нулю, то есть $v_n t - g cos \alpha t^2/2 = 0$, где v_n проекция начальной скорости осколка на перпендикуляр к склону, а $- g cos \alpha$ проекция ускорения на это направление. Отсюда $t = 2v_n/g cos \alpha$. Наибольшее время получится при $v_n = v$, для осколка, вылетающего перпендикулярно склону. Тогда $t_{max} = 2v/g cos \alpha$. Поскольку в этом случае начальная скорость вдоль склона равна нулю, то перемещение вдоль склона $L = g sin \alpha t_{max}^2/2 = 2v^2 sin \alpha/g cos^2 \alpha$. Это и есть расстояние от места взрыва до места падения последнего осколка.


Otbet: $t_{max} = 2v/gcos\alpha$; $L = 2v^2sin\alpha/gcos^2\alpha$.

11. В качестве 11 задачи представьте заполненную таблицу ответов, если задача не решена оставьте строчку пустой. Будьте внимательны, при неправильном или неполном ответе в таблице задача не будет оценена!

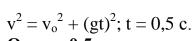
№ задачи	Ответ				
1.	μ ₃ = 0,5 (здесь и далее обозначение искомой ве-				
	личины может быть опущено, как и указанные в				
	условии единицы измерения)				
2.	$\mathbf{B} = \mathbf{m}\mathbf{V}(\sin\alpha - \sin\beta)/\mathbf{ed}$				
3.	4				
4.	У серебра больше на 0,7%				
5.	199m				
6.	h = 3mH/5(M+m)				
7.	8				
8.	0,52 мВт				
9.	20 л				
10.	$t_{\text{max}} = 2v/g\cos\alpha; L = 2v^2\sin\alpha/g\cos^2\alpha$				

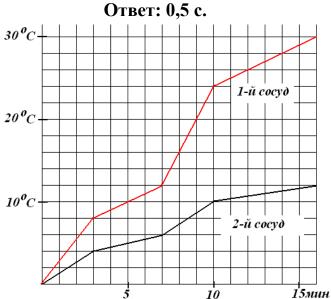
Заочный тур Всесибирской открытой олимпиады школьников 2014-2015 10 класс

Задача оценивается в 5 баллов только при наличии полного решения и правильного ответа в указанных в условиях единицах. Если ответом в задаче является несколько величин, то их числовые значения приводятся в ответе через точку с запятой. Ответ должен быть внесён в таблицу. При невыполнении любого из требований за задачу ставится 0 баллов. Без представления таблицы работа не проверяется.

1. Три тела, указанных на рисунке масс, связаны нерастяжимыми невесомыми нитями. К крайнему левому телу приложена сила f, на-

правленная вправо. При какой наименьшей силе F, приложенной к крайнему правому телу, нити не будут провисать?


Решение

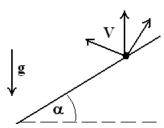

Критическое условие обращение в ноль натяжения нити между массами m и 2m. При этом ускорения этих масс должны быть равны. То есть f/m = F/6m;

F = 6f.

Ответ: F = 6f.

2. По горизонтальному столу со скоростью $v_o = 12$ м/с двигалось тело. Слетев с него, оно ударилось о пол со скоростью v = 13 м/с. Какое время тело пролетело до удара? Принять ускорение свободного падения g = 10 м/с². Влиянием воздуха пренебречь.

Решение

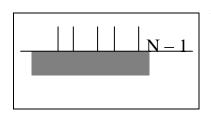

3. В двух сосудах находилась вода с начальной температурой 0° С. В них на 3 минуты включили нагреватели с одинаковой мощностью. Затем мощности стали менять. Зависимость температуры воды от времени в этих сосудах указана на графике. Известно, что наименьшая мощность нагревателя во втором сосуде $N_{min} = 25$ Вт. Какова наибольшая мощность нагревателя в первом сосуде? Теплообменом с окружающей средой можно пренебречь.

Решение

По участку графиков нагрева за

время от 0 до 3 минут можно сделать вывод, что теплоёмкости сосудов отличаются в 2 раза: $N_o\Delta t = C_1\Delta T_1 = C_2\Delta T_2$. Мощность $N = C\Delta T/\Delta t$ можно определить по наклону графика. Для 2-го сосуда наибольший наклон совпадает с наклоном начального участка, который в 4 раза больше наиболее пологого участка. Поэтому наибольшая мощность для нагревателя во 2-м сосуде $N_o = 4N_{min} = 100$ Вт. Для первого сосуда наибольший наклон $\Delta T/\Delta t$ достигается в интервале времени от 7 до 10 минут и он наклон в 1,5 раз больше начального. Таким образом искомая наибольшая мощность $N = 1,5N_o = 150$ Вт у нагревателя в 1-м сосуде. Наименьшая же мощность у нагревателя в 1-м сосуде равна 37,5 Вт.

Ответ: 150 Вт


4. На склоне горы с углом наклона α взрывается бомба. Осколки бомбы летят во все стороны с одинаковой начальной скоростью V. Через какое время после взрыва и на каком расстоянии от места взрыва упадёт самый последний осколок? Ускорение свободного падения g.

Решение

Для времени падения на наклонную плоскость не существенно движение вдоль неё. Перемещение по перпендикуляру к наклонной плоскости за время полёта равно нулю, то есть $v_n t - g cos \alpha t^2/2 = 0$, где v_n проекция начальной скорости осколка на перпендикуляр к склону, а $- g cos \alpha$ проекция ускорения на это направление. Отсюда $t = 2v_n/g cos \alpha$. Наибольшее время получится при $v_n = v$, для осколка, вылетающего перпендикулярно склону. Тогда $t_{max} = 2v/g cos \alpha$. Поскольку в этом случае начальная скорость вдоль склона равна нулю, то перемещение вдоль склона $L = g sin \alpha t_{max}^2/2 = 2v^2 sin \alpha/g cos^2 \alpha$. Это и есть расстояние от места взрыва до места падения последнего осколка.

Otbet: $t_{max} = 2v/gcos\alpha$; $L = 2v^2sin\alpha/gcos^2\alpha$.

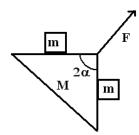
5. Брусок плавает в воде. В него втыкают одинаковые стальные иглы. При 99 как угодно воткнутых иглах часть бруска торчит из воды. Наименьшее число игл, при котором брусок погружается ниже уровня воды, N=100. Сколько ещё игл можно воткнуть, чтобы брусок продолжал оставаться наплаву? Плотность стали $\rho=7,8\rho_{o}$, где ρ_{o} плотность воды. Объёмом воткнутой части иглы и изменением объёма бруска при втыкании игл пренебречь.

Решение

Погружение бруска от втыкания одной иглы, зависит от того, куда она втыкается. Если игла остаётся целиком в воздухе, то масса вытесненной бруском воды равна массе иглы m, а объём погружения бруска увеличится на $v_0 = m/\rho_0$. Если игла целиком в

воде, то объём погружения бруска меньше на объём иглы $v=m/\rho$, то есть он тогда равен $m/\rho_0-m/\rho$. Суммарный вытесненный объём остаётся, конечно,

прежним. Понятно поэтому, что брусок сильнее всего погружается если иглы втыкаются сверху и они целиком в воздухе.

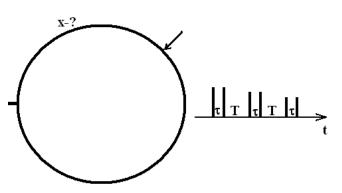

Рассмотрим предельную ситуацию, когда при N иглах в воздухе верхняя грань бруска точно на уровне поверхности воды. Втыкание дополнительных игл приведёт к тому, что они частично окажутся в воде. Какое число игл полностью находящихся в воде способен удержать брусок? Поскольку масса дополнительно вытесненной воды $(N + \Delta N)\rho_0 v$ равна массе дополнительных игл $\Delta N\rho v$, то $(N + \Delta N)\rho_0 v = \Delta N\rho v$, и $\Delta N = N\rho_0/(\rho - \rho_0) = 100/6.8 \cong 14.7$.

Если иглы не ломать, то их число должно быть целым. Понятно, что при $\Delta N = 15$ масса вытесненной воды $(N + \Delta N)\rho_o v$ меньше массы 15 игл и брусок вместе с иглами уйдёт на дно. При $\Delta N = 14$ иглы просто частично останутся в воздухе.

Однако условия задачи не исключают другой предельной ситуации. При N-1 игле, остающихся в воздухе, брусок ещё не полностью погружён в воду, но его верхняя грань почти на уровне поверхности воды. Тогда при N иглах масса теперь вытесненной иглами воды равна массе одной иглы. Поэтому масса дополнительно вытесненной воды теперь будет $(N + \Delta N)\rho_0 v - \rho v$. Приравнивая её массе дополнительных игл $\Delta N \rho v$ получим соотношение $(N + \Delta N)\rho_0 - \rho = \Delta N \rho$, откуда $\Delta N = (N \rho_0 - \rho)/(\rho - \rho_0) = 92,2/6,8 \cong 13,5$.

Итак при $\Delta N = 13$ брусок с иглами заведомо не утонет, может не утонуть при 14 иглах, но при 15 утонет заведомо.

Ответ: $\Delta N = 13$, может быть 14, но не больше.



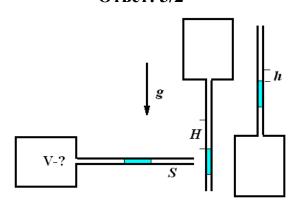
6. На столе находится равнобедренный клин массы М с углом 2α при вершине. Он соприкасается с симметрично расположенными брусками массы m каждый. Клин начали тянуть с силой F, направленной по биссектриссе угла при вершине. Найдите ускорение клина, если трения нет.

Решение

Ускорения брусков А направлены по нормали к сторонам клина, из условия соприкосновения имеем $A = asin\alpha$, где a ускорение клина, направленное по биссектрисе. Сила нормального давления, действующая на брусок, по 2-у закону Ньютона $N = mA = masin\alpha$. Для клина: $Ma = F - 2Nsin\alpha$. После подстановки N находим $a = F/(M + 2msin^2\alpha)$.

OTBET: $a = F/(M + 2msin^2\alpha)$.

7. На кольце длины L=1 м есть датчик, фиксирующий приход звуковых импульсов по материалу кольца. После удара по кольцу датчик зарегистровал череду импульсов: сначала два импульса почти равной силы с интервалом времени $\tau=0.1$ мс, затем через время T=0.9 мс ослабленный третий импульс, а почти такой же четвёртый импульс — ещё спустя


время τ ... и т.д. Объясните, почему так происходит и найдите расстояние вдоль кольца от датчика до места удара. (Укажите меньшее расстояние в сантиметрах.)

$$< x < L/2; \tau = (L - x)/c - x/c; T + \tau = L/c; x = LT/2(T + \tau) = 45 cm. >$$

8. Заряженные шарики движутся по одной вертикали. В некоторый момент ускорение верхнего шарика направлено вверх и равно g/2, где g ускорение свободного падения. У нижнего шарика в этот момент ускорение равно 2g. Во сколько раз сила электрического отталкивания больше силы тяжести, действующей на верхний шарик?

Решение

$$mg/2 = F - mg$$
; $M2g = F + Mg$; $F = (3/2)mg = Mg$; $M = (3/2)m$. > Other: $3/2$

9. От сосуда с воздухом отходит горизонтальная трубка сечения S, запертая столбиком воды. Когда сосуд повернули на 90° трубкой вниз, столбик сместился по трубке на расстояние H. Когда сосуд повернули трубкой вверх, то столбик воды сместился на расстояние h. Найдите объём воздуха, запертый столбиком воды при горизонтальном по-

ложении трубки. Температура и атмосферное давление неизменны.

Решение

$$(V + SH)(P - \rho gL) = PV; (V - Sh)(P + \rho gL) = PV; V = SHh/(H - h).$$

10. На горизонтальной опоре без трения расположены по прямой три бруска: средний массы M, а слева и справа бруски масс

3M с прикреплёнными к ним упругими пружинами. Средний брусок толкнули влево, при наибольшем сжатии пружины левого бруска его скорость оказалась равна V=0.6 м/с. Брусок M отскакивает и налетает на пружину правого бруска. Какова скорость правого бруска в момент наибольшего сжатия прикреплённой к нему пружины? Ответ в м/с.

Решение

Из сохранения импульса для момента набольшего сжатия получаем, что начальная скорость $V_o = 4V$. Из сохранения энергии и импульса для разлёта находим, что скорость средней массы меняет направление на противоположное и уменьшается вдвое, а именно $V_1 = V_o/2 = 2V$. Из сохранения импульса для момента набольшего сжатия получаем $V_2 = V_1/4 = V/2 = 0.3$ м/с.

Ответ: 0,3 м/с.

11. В качестве 11 задачи представьте заполненную таблицу ответов, если задача не решена оставьте строчку пустой. Будьте внимательны, при неправильном или неполном ответе в таблице задача не будет оценена!

№ задачи	Ответ
1.	F = 6f (здесь и далее обозначение искомой вели-
	чины может быть опущено, как и указанные в
	условии единицы измерения
2.	0,5 c
3.	150 BT
4.	2v/gcosα; 2v ² sinα/gcos ² α
5.	$\Delta N = 13$, может быть 14, но не больше
6.	$F/(M + 2msin^2\alpha)$
7.	45 см
8.	3/2 или 1,5
9.	V = SHh/(H - h)
10.	0,3 м/с