11 класс

- 1. Сколько поколений? (6 баллов) См. задачу 1 в 9 классе.
- 2. Мембраны (4 балла) См. задачу 2 в 9 классе.
- 3. Задача по генетике (9 баллов)

Клуб любителей кошек города Старосибирска вывел новую породу «Сибирский валенок». Основным ее отличием было изменение ритуала ухаживания у котов: коты этой породы не выказывали самкам своих симпатий, а напротив, делали вид, что не обращают на них внимания. Но при этом как бы невзначай демонстрировали самкам свой интеллект, чем покоряли кошек навсегда.

Вам предложено разобраться в наследовании нового признака. Студент-генетик, работавший с ним до Вас, установил, что он обусловлен мутацией одного гена. Далее он выдвинул две рабочие гипотезы, которые не успел проверить:

- 1) признак сцеплен с Y-хромосомой (ген находится в Y-хромосоме, а в X-хромосоме его нет)
- 2) признак аутосомный, ограниченный полом (ограниченными полом называются признаки, гены которых есть у обоих полов, но проявляются в фенотипе только у одного в данном случае, у самцов)

Предложите схему скрещиваний, которые надо поставить, чтобы сделать выбор между этими гипотезами. Результаты скрещиваний должны дать однозначный и наиболее

полный ответ на вопрос о характере наследования признака «интеллектуальное ухаживание».

Для скрещиваний можно использовать любых животных новой породы, а также местную породу, у которой такой признак никогда не встречается. Считайте породы чистыми линиями, т.е. гомозиготными по всем генам.

OTBET.

Поставим реципрокные срещивания и получим F1 и F2

<u>Скрещивание 1</u> ♂ Сиб.В. × ♀ обычных

<u>Скрещивание 2</u> ♂ обычные × ♀ Сиб.В.

Рассмотрим их результаты в трех случаях:

1) <u>Признак Y-сцепленный</u>. Обозначим аллель породы «Валенок» как **A**, а аллель этого же гена у обычных котов – **a**. (здесь нет понятия доминантности-рецессивности, поскольку у самцов он в одной копии, а у самок его вообще нет).

В результатах скрещиваний мы будем обращать внимание на фенотип только самцов, поскольку у самок признак не проявляется (условие задачи).

	Скрещ 1		Скрещ. 2			
P						
	Сиб.В. обычные		обычные Сиб.В.			
F1	3	\$	3	9		
	XYA	XX	XYa	XX		
Фенотип самцов F1	Все – с признаком А		Все – без признака А.			
P2	♂ F1 XY ^A × ♀ F1 XX					
	признак А		без признака			
F2	3	2	3	9		
	XYA	XX	XYa	XX		
Фенотип самцов F2	Все – с признаком А		Все – без признака А.			

2) Признак аутосомный доминантный.

А - аллель породы «Валенок»

а - нормальный аллель

Поскольку в породе «Валенок» признак проявляется <u>у всех</u> котов, а в обычной породе – никогда не встречается, то обе породы считаем гомозиготными по этому гену.

	Скрещ 1		Скрещ. 2		
P	♂ AA × ♀ aa		♂ aa ×♀ AA		
	Сиб.В. обычные		обычные Сиб.В.		
F1	3	0+	3	0+	
	Aa	Aa	Aa	Aa	
Фенотип самцов F1	Все – с признаком А		Все – с признаком А.		

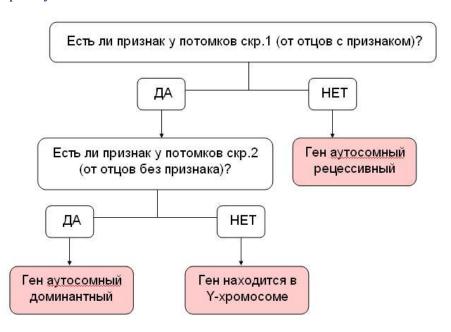
Поскольку полученный результат отличается от случая 1, то ставить дальше скрещивания необязательно – гипотезу можно считать подтвержденной. Если мы все же поставим проверку, то получим в F2:

P2	♂ F1 Aa × ♀ F1 Aa		♂ F1 Aa × ♀ F1 Aa		
	признак А		признак А		
F2	3	4	3	9	
	3 A_ : 1 aa	3 A_ : 1 aa	3 A_ : 1 aa	3 A_ : 1 aa	
Фенотип самцов F2	3/4 - с признаком А		3/4 – с признаком А		

3) Признак аутосомный рецессивный.

а - аллель породы «Валенок»

А - нормальный аллель


Также считаем обе породы гомозиготными по этому гену.

and the first over hopoger of the first in order to be the first over the first o							
	Скреп	ц1	Скрещ. 2				
P	♂ aa × ♀ AA		♂ AA ×♀ aa				
	Сиб.В. обычные		обычные Сиб.В.				
F1	3 2		3	9			
	Aa	Aa	Aa	Aa			
Фенотип	Все – без		Все – без				
самцов F1	признака а		признака а				
Поскольку полученный результат отличается от случаев 1 и 2, то также вывод можно сделать уже по фенотипам F1. Тем не менее, всегда лучше подтвердить гипотезу, получив F2.							
P2	♂ F1 Aa × ♀ F1 Aa		♂ F1 Aa × ♀ F1 Aa				
	без признака		без признака				
F2	3	2	3	4			
	3 A_ : 1 aa	3 A_ : 1 aa	3 A_ : 1 aa	3 A_ : 1 aa			
Фенотип самцов F2	1/4 - с признаком а		1/4 - с признаком а				

ОТВЕТ. Таким образом, поставив два **реципрокных скрещивания**, уже по результатам **первого поколения** можно различить эти три случая.

Логика анализа результатов показана на схеме (скрещ. 1 – самцы новой породы с признаком, скрещ. 2 – самцы местной породы без признака). Поскольку признак у самок не проявляется никогда, то при анализе потомства смотрим только на самцов.

Чтобы быть уверенными, желательно получить F2, как в приведенном выше решении, либо поставить анализирующие скрещивания, как предлагали многие участники.

4. Чья ДНК? (8 баллов)

В лаборатории были выделены препараты ДНК из мозга человека и мыши. При хранении надписи на пробирках стерлись. Предложите способы, которыми можно восстановить принадлежность образцов ДНК.

OTBET.

В первую очередь в ответе необходимо определить, чем же отличаются эти препараты. Если это выделенная ДНК, то отличаются они **нуклеотидной последовательностью** (хромосомную структуру в таких препаратах уже не определяется, так как хромосомы при выделении ДНК рвутся на кусочки длиной несколько десятков тысяч пар нуклеотидов). Соответственно, далее требуется описать **методы**, которые можно использовать для определения отличий именно в нуклеотидной последовательности.

- 1. Во-первых, это, конечно, **секвенирование** определение нуклеотидной последовательности. Здесь надо обсудить, какие именно части генома надо определять, так как просто определять весь геном сильно дорого и сложно. А какую часть от генома взять? Ведь можно выбрать консервативный участок и по нему не увидеть отличий! Важно указать, что секвенировать надо те последовательности, которыми различаются ДНК мыши и человека.
- 2. Во-вторых, **гибридизация специфичных зондов**. Обоснование выбора зонда (комплементарен последовательностям, которыми различается ДНК мыши и человека)
- 3. В-третьих, применение рестрикционного картирования (в реальности в чистом виде оно не применимо, но тонкостей школьник знать не обязан). Для этого необходимо добыть еще препараты ДНК мыши и человека, порезать их рестриктазами и точно так же порезать препараты в пробирках, сравнить наборы фрагментов по схожести идентифицировать.
- 4. Использование ПЦР (амплификации ДНК). Обоснование выбора праймеров (комплементарен последовательностям, которыми различается ДНК мыши и человека)

Таким образом, в ответе необходимо не просто перечислить все вышеуказанные способы, но дать и обоснование выбора специфичных последовательностей.

5. Ботулизм (8 баллов) См. задачу 5 в 10 классе.

Максимальная сумма баллов 11 класс:

Задание	1. Покол.	2. Мембр.	3. Генет	4. ДНК	5. Ботул.	Σ
Максим. балл	6	4	9	8	8	35