

56-я Всесибирская открытая олимпиада школьников Заключительный этап 2017-2018 уч. года

Решения заланий по химии

Задание 1. (авторы Э.С. Сапарбаев, В.Н. Конев).

1-3. Взаимодействие одноосновной карбоновой кислоты (\mathbf{Y}) со спиртом – реакция этерификации, приводящая к образованию сложного эфира (соединения \mathbf{X}). Эту реакцию обычно проводят в присутствии катализатора и водоотнимающего средства – концентрированной серной кислоты H_2SO_4 (\mathbf{Z}). Установим примерную молекулярную массу эфира \mathbf{X} : $\mathbf{M}_r(\mathbf{X}) = 4,5 \cdot 29 \sim 131 \text{ г/моль}$. Учитывая молекулярную формулу изоамилового спирта ($\mathbf{C}_5\mathbf{H}_{11}\mathbf{O}\mathbf{H}$), а также то, что при реакции этерификации отщепляется молекула воды, найдем примерную молекулярную массу карбоновой кислоты \mathbf{Y} : $\mathbf{M}_r(\mathbf{Y}) \sim 131 + 18 - 88 \sim 61 \text{ г/моль}$. Среди одноосновных предельных карбоновых кислот наиболее близким значением молекулярной массы обладает уксусная кислота $\mathbf{C}\mathbf{H}_3\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H}$. Структурные формулы изоамилового спирта, соединений \mathbf{X} (изоамилацетат) и \mathbf{Y} (уксусная кислота):

$$H_3$$
С H_2 OH H_3 С OH H_3 С H_3 С H_4 H_5 С H_5 H_5 С H_5 С

- **4.** Температура плавления безводной уксусной кислоты \sim 17 °C. При меньшей температуре безводная уксусная кислота превращается в бесцветные кристаллы, по внешнему виду похожие на кристаллы обычного льда. Именно поэтому ее называют "ледяной".
- **5.** a обратный холодильник (холодильник Димрота); δ насадка Дина-Старка; ϵ круглодонная колба; \mathbf{r} нагревательная плитка; \mathbf{g} «кипелки». «Кипелки» добавляют в колбу для того, чтобы смесь равномерно кипела (они являются центрами кипения). Если их не добавить, то может образоваться перегретая жидкость, которая кипит «толчками», выплескиваясь из колбы в другие части прибора.
- 6. Рассчитаем количество исходных изоамилового спирта и уксусной кислоты:

$$\nu(C_2H_4O_2) = \frac{57,1\cdot 1,05}{60,1} = 1 \text{ моль; } \nu(C_5H_{12}O) = \frac{163,1\cdot 0,81}{88,2} = 1,5 \text{ моль.}$$

Поскольку при образовании изоамилацетата в реакции этерификации участвуют эквимолярные количества спирта и кислоты, расчет теоретического количества эфира необходимо проводить по количеству кислоты. Т. е., теоретически должно было быть получено 1 моль эфира или 1 моль \cdot 130,2 г/моль = 130,2 г. Воды должно было образоваться 1 моль \cdot 18 г/моль = 18 г, но выделилось всего 15 г, следовательно, выход в реакции составил 15 г / 18 г = 0,833 или \approx 83 %. Таким образом, изоамилацетата образовалось 130,2 г \cdot 0,833 \approx 110 г.

Система оценивания:

1. Структурные формулы спирта, кислоты и эфира по 1 б.,	$1 \times 3 = 3 6.$
подтверждение расчетом 2 б, названия кислоты и эфира по 1 б.	$2+1\times 2=4 6.$
2. Формула (название) кислоты Z 1 б., катализатор и водоотнимающее средство по 0,5 б.	$1+0.5\times 2=2$ 6.
3. Название упомянутой реакции 1 б.	1 б.
4. Объяснение названия "ледяная" 1 б.	1 б.
5. Названия частей установки по 1 б., функция кипелок 1 б.	$1 \times 5 + 1 = 6 6$.
6. Расчет выхода эфира и массы X по 2 б.	$2 \times 2 = 4 6.$
Всего	21 балл

Задание 2. (авторы А.И. Ушеров, В.А. Емельянов)

- **1.** Минералы железных руд это в основном оксиды. Попробуем представить формулу магнетита как Fe_xO_y , тогда $\omega_{Fe} = 55,85x/(55,85x+16y) = 0,7236$. Отсюда x = 0,75y. Так как x и y могут быть только целыми числами, то наименьшие числа: x = 3, y = 4, следовательно, формула магнетита Fe_3O_4 . Такое вещество действительно существует, по классификации относится к основным оксидам (можно просто оксид). Если формула представлена в виде $Fe(FeO_2)_2$ то допускается ответ соль.
- **2.** Пусть масса концентрата 100 г, тогда в нём содержится второго элемента 0,5 г. Чтобы найти массу пирротина, поделим массу второго элемента на его массовую долю в пирротине. Получим массу пирротина в 100 г концентрата или, иначе говоря, массовую долю пирротина в концентрате $\omega_{\text{пир.}}$ = 0,5/(1-0,6357) = 0,5/0,3643 = 1,372 %.
- В 100 г концентрата содержится 60,5 г железа. Масса железа от пирротина составит 1,372*0,6357 = 0,872 г, следовательно, масса железа от магнетита 60,5-0,872 = 59,628 г, а содержание магнетита в концентрате составит $\omega_{\text{магн.}}$ = 59,628/0,7236 = 82,4%.
- **3.** Представим формулу пирротина Fe_xA_y , где x и y могут быть только целыми числами, а элемент A неметалл. Атомную массу A примем за Z, тогда $\omega_{Fe} = 55,85x/(55,85x+yZ) = 0,6357$. x = 0,03124yZ. Z = 32x/y. Единственное разумное решение получается при x = 1, y = 1, Z = 32. Следовательно, элемент A это сера, значит формула пирротина FeS. По классической классификации это соль, но можно отнести его и к классу сульфидов, восстановителей и даже оснований.
- **4.** Уравнения реакций: a) $Fe_3O_4 + 8HCl = FeCl_2 + 2FeCl_3 + 4H_2O$, $FeS + 2HCl = FeCl_2 + H_2S\uparrow$;
- 6) $Fe_3O_4 + 10HNO_{3 \text{ KOHII.}} = 3Fe(NO_3)_3 + NO_2 \uparrow + 5H_2O_3$

 $3FeS + 30HNO_{3 \text{ конц.}} = Fe_2(SO_4)_3 + Fe(NO_3)_3 + 27NO_2\uparrow + 15H_2O$ или

 $FeS + 12HNO_{3 \text{ KOHII.}} = Fe(NO_3)_3 + H_2SO_4 + 9NO_2 \uparrow + 5H_2O.$

5. Метасиликат кальция — $CaSiO_{3}$, ортосиликат кальция — Ca_2SiO_4 , диортосиликат алюминия — $Al_2Si_2O_7$, метаалюминат магния — $Mg(AlO_2)_2$.

Уравнения реакций: a) $Al_2Si_2O_7 + 6HCl + (2n-3)H_2O = 2AlCl_3 + 2SiO_2*nH_2O \downarrow (2H_2SiO_3 \downarrow + H_2O)$,

 $Mg(AlO_2)_2 + 8HCl = 2AlCl_3 + MgCl_2 + 4H_2O;$

6) $Al_2Si_2O_7 + 6NaOH + H_2O = 2Na[Al(OH)_4] + 2Na_2SiO_3 (Na_4SiO_4),$

 $Mg(AlO_2)_2 + 2NaOH + 4H_2O = 2Na[Al(OH)_4] + Mg(OH)_2 \downarrow$.

6. Уравнение реакции: $CaCO_3 \xrightarrow{t, {}^{\circ}C} CaO + CO_2 \uparrow$.

В 100 кг концентрата содержится $m_{CaO} = 0.3$ кг и $m_{SiO2} = 5$ кг.

Примем массу добавленного известняка за x кг. Масса CaO, вносимого с известняком, составит $m_{\text{CaO}}^{\text{изв.}} = x^* M_{\text{CaO}} / M_{\text{CaCO3}} = x^* 56 / 100 = 0,56 x$ кг.

Тогда общая масса CaO в агломерате будет равна $m_{CaO}^{\text{агл.}} = m_{CaO} + m_{CaO}^{\text{изв.}} = 0,3+0,56x$ кг, а масса SiO_2 в агломерате $m_{SiO2}^{\text{агл.}} = 5$ кг.

По условию, $\mathbf{B}=1,7=\omega_{\mathrm{CaO}}^{\mathrm{arm.}}/\omega_{\mathrm{SiO2}}^{\mathrm{arm.}}=\mathrm{m_{\mathrm{CaO}}}^{\mathrm{arm.}}/\mathrm{m_{\mathrm{SiO2}}}^{\mathrm{arm.}}=(0,3+0,56x)/5$, откуда x=14,6. К 100 кг концентрата нужно добавить 14,6 кг известняка.

7. Так как массовая доля коксика в аглошихте составляет 0,042, то $m_{\text{кокс.}}/(100+m_{\text{кокс.}})=0,042$. Масса коксика, которую следует добавить к 100 кг смеси, составит $m_{\text{кокс.}}=100*0,042/(1-0,042)=4,38$ кг.

Уравнение реакции: $C + O_2 \xrightarrow{t, {}^{\circ}C} CO_2$ (или CO).

8. Масса агломерата складывается из масс концентрата, остатка от известняка (надо вычесть улетевший углекислый газ или взять массу, приходящуюся в известняке на оксид кальция) и золы коксика. Масса остатка от известняка составит $m_{\text{изв.}}$ - $m_{\text{CO2}}^{\text{изв.}}$ = 14,6-0,44*14,6 = 0,56*14,6 = 8,2 кг.

Масса коксика, необходимая на 100 кг смеси 4,38 кг, тогда на 100+14,6=114,6 кг его потребуется 4,38*1,146=5,02 кг. Золы от него останется 0,12*5,02=0,60 кг.

 $m_{\text{агл.}} = 100+8,2+0,60 = 108,8 \text{ кг.}$

Система оценивания:

1. Определение формулы магнетита, подтверждённой расчётом 2 б. (без подтверждения 1 б.), класс соединения 0,5 б.	2+0.5=2.5 6.
2. Расчёт массовых долей магнетита и пирротина в концентрате по 2 б.	$2 \times 2 = 4 6$.
3. Формула пирротина с расчетом 2 б. (без расчета 1 б.), класс 0,5 б.	2+0.5=2.5 6.
4. Уравнения реакций по 1 б.	1×4 = 4 б.
5. Формулы по 0,5 б., уравнения реакций по 1 б.	$0.5 \times 4 + 1 \times 4 = 6 6$.
6. Уравнение реакции 1 б., расчет массы известняка 3 б.	1+3=46.
7. Уравнение реакции 1 б., расчет массы коксика 2 б.	1+2=3 6.
8. Расчет массы агломерата 3 б. (остаток от известняка 2 б., зола 1 б.)	3 б.
Всего	29 баллов

Задание 3. (авторы А.В. Задесенец, В.А. Емельянов)

1. Уравнение реакции деления 235 U: $^{235}_{92}$ U + $^{1}_{0}$ n = $^{145}_{56}$ Ba + $^{89}_{36}$ Kr + 2^{1}_{0} n.

Отношение мощностей взрывов $50*10^6/15*10^3 = 3,33*10^3$.

- **2.** Изотопы водорода: 1 H протий, 2 H (символ D) дейтерий, 3 H (символ T) тритий.
- **3.** По описанию газ **Y** очень похож на водород, но расчет молярной массы газа **Y** дает нам значение $29 \cdot 0.103 = 3.0$ г/моль. Такое возможно, если в составе газа **Y** один атом водорода (протия 1 H) из воды, другой (дейтерия $D \equiv ^2$ H) из $_3^6 Li_1^2 H$. То есть **Y** это HD дейтероводород. При горении дейтероводорода, как и при горении водорода обычного, получится вода HDO (**Z**), в которой один из атомов водорода замещен на дейтерий. Такую воду называют полутяжелой (или просто тяжелой) водой. Вещество $_3^6 Li_1^2 H$ (**X**) дейтерид лития-6.
- **4.** Уравнения реакций: LiH + $H_2O \rightarrow LiOH + H_2 \uparrow [1]$; LiH + $HCl \rightarrow LiCl + H_2 \uparrow [2]$;
- $2H_2 + O_2 \rightarrow 2H_2O$ [3]; $2LiH + O_2 \rightarrow 2LiOH$ ($Li_2O + H_2O$) [4]; $2LiH \rightarrow 2Li + H_2 \uparrow$ [5].
- **5.** Уравнения реакций: LiH + Cl₂ \rightarrow LiCl + HCl; LiH + NH₃ \rightarrow LiNH₂ + H₂; 2LiH + B₂H₆ \rightarrow 2LiBH₄; 3LiH + N₂ \rightarrow Li₃N + NH₃.
- **6.** Уравнения ядерных реакций: ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n + Q$, ${}_{3}^{6}Li_{1}^{2}H \longrightarrow {}_{2}^{4}He + Q$ в общем виде.

Реакция идет в 2 стадии: ${}_{3}^{6}Li+{}_{0}^{1}n-\longrightarrow_{1}^{3}H+{}_{2}^{4}He+Q$, ${}_{1}^{2}H+{}_{1}^{3}H-\longrightarrow_{2}^{4}He+{}_{0}^{1}n+Q$.

- **7.** Частицы ${}_{2}^{4}He$, выделяющиеся в ядерных реакциях, называются α -частицы. Поскольку в момент выделения они имеют заряд 2+, α -частицы обладают исключительно сильными окислительными свойствами.
- 8. Сахаров Андрей Дмитриевич.

Система оценивания:

Системи оценивания.	
1. Символ 1 б., отношение мощностей 1 б.	1+1=2 6.
2. Названия по 0,5 б., символы по 0,5 б.	$0.5 \times 3 + 0.5 \times 2 = 2.5 6.$
3. Формулы Y и Z по 1 б. (H ₂ и H ₂ O по 0,5 б.), дейтероводород, тяжелая	
(полутяжелая) вода, дейтерид лития по 1 б. (водород, вода и гидрид лития	$1 \times 2 + 1 \times 3 = 5 6$.
no 0,5 б.)	
4. Уравнения реакций по 1 б. (засчитываются как с LiD, так и с LiH)	$1 \times 5 = 5 6$.
5. Уравнения реакций по 1 б. (засчитываются как с LiD, так и с LiH)	$1 \times 4 = 4 6.$
6. Уравнения ядерных реакций по 1 б.	$1 \times 2 = 2 6$.
7. Название 1 б., свойства 1 б.	1+1=2 6.
8. Φ амилия, имя и отчество по $0.5 б$.	$0.5 \times 3 = 1.5 \delta.$
Всего	24 балла

Задание 4. (автор Н.В. Рубан).

1. В задаче говорится о простом веществе, способном светиться в темноте. Этому условию удовлетворяет фосфор, в чем можно убедиться и с помощью расчета.

Обозначим атомную массу элемента X за m. Массовая доля элемента X во фторапатите составляет 18,45 %, следовательно, 3*m/(5*40+3*(m+64)+19) = 0,1845. Отсюда получаем m = 31, что соответствует атомной массе фосфора. Отсутствие самородного фосфора в природе принято связывать с его легкой окисляемостью и вообще высокой химической активностью.

- **2.** Уравнение реакции окисления белого фосфора на воздухе: $P_4 + 5O_2 \rightarrow P_4O_{10}$ (правильным так же считать P_2O_5 , P_2O_3 , P_4O_6). Обычно белый фосфор хранят под слоем воды или в инертной атмосфере. Ответы «под слоем масла или любого органического растворителя» не засчитываются в связи с растворимостью белого фосфора в неполярных растворителях.
- **3.** Объем фосфора на морде собаки можно вычислить по формуле $V = \pi r^2 * h$, где πr^2 площадь круга (в нашем случае - площадь морды собаки), h - высота (толщина слоя фосфора). Таким образом, $V_P = 3.14*100*0.1 = 31.4$ см³. Массу фосфора вычисляем по формуле $m_P = V_P * \rho = 31.4*1.82 = 57.2$ г. Тогда, за час собака съест 57,2*0,1 = 5,72 г фосфора, что намного превышает летальную дозу. Следовательно, собака получит летальную дозу меньше, чем через час после нанесения состава, что делает невозможным его применение.
- 4. Если собака съедает за час примерно 5,7 г фосфора, это соответствует 5,7/60 = 0,095 г/мин. Следовательно, собака съест летальную дозу за 0,15/0,095 = 1,6 мин.
- **5.** Уравнение реакции: $4\text{Ca}_5(\text{PO}_4)_3\text{F} + 18\text{SiO}_2 + 30\text{C} \xrightarrow{t, ^{\circ}\text{C}} 3\text{P}_4 \uparrow + 18\text{CaSiO}_3 + 30\text{CO} \uparrow + 2\text{CaF}_2$.
- **6.** Уравнения реакций: $P_4 + 6Mg \rightarrow 2Mg_3P_2$ (вещество **B**); $Mg_3P_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2PH_3$ (**C**);
- $2P_4 + 3Ba(OH)_2 + 6H_2O \rightarrow 3Ba(H_2PO_2)_2 + 2PH_3(C); 4PH_3 + 8O_2 \rightarrow 6H_2O \uparrow + P_4O_{10}(P_2O_5)(\mathbf{D});$

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$
 (E); $5PH_3 + 8KMnO_4 + 12H_2SO_4 \rightarrow 5H_3PO_4$ (E) $+ 8MnSO_4 + 4K_2SO_4 + 12H_2O$;

$$P_4 + 10Cl_2 \rightarrow 4PCl_5 \ (\textbf{F}); \ PCl_5 + H_2O \rightarrow 2HCl + POCl_3 \ (\textbf{J}).$$

7. Возгонка (сублимация) – переход вещества из твердого состояния сразу в газообразное, минуя жидкое. Такие превращения, как возгонка, плавление, О испарение и другие переходы из одной фазы в другую без изменения химического состава вещества, относятся к фазовым переходам. Поскольку плотность вешества **D** в газовой фазе составляет 9,79 по воздуху, его молекулярная масса равна $9.79*29 = 283.9 \approx 284$, что соответствует молекулярной

формуле P_4O_{10} и следующей структурной формуле (структурная формула для P_2O_5 не засчитывается):

8. Героя, вымышленного Конан Дойлем, зовут Шерлок Холмс.

Система оценивания:

1. Определение элемента X с расчетом 2 б. (без расчета 1 б.), активность 1 б.	2+1=3 6.
2. Уравнение реакции 1 б., способ хранения 1 б.	1+1=26.
3. Расчет массы 3 б., невозможность применения с расчетом 1 б., без расчета 0,5 б.	3+1=46.
4. Расчет времени 1 б.	1 б.
5. Уравнение реакции 2 б., без коэффициентов (все продукты реакции правильные) 1 б.	2 б.
6. Формулы веществ B-J по 0.5 б., уравнения реакций по 1 б.	$0.5 \times 6 + 1 \times 8 = 11 6.$
7. Φ азовый переход 1 б., структурная формула вещества D 1 б.	1+1=2 6.
8. Шерлок Холмс 1 б.	1 б.
Всего	26 баллов