Решения заданий заключительного этапа Всесибирской открытой олимпиады школьников по математике 2020-2021 гг. Каждая задача оценивается из 7 баллов.

9 класс

9.1. Доказать, что в любом 100-значном натуральном числе можно вычеркнуть одну цифру так, чтобы в получившемся 99-значном числе количество семёрок, стоящих на чётных (считая слева), позициях, было не больше количества семёрок, стоящих на нечётных, (считая слева), позициях.

Доказательство. Пусть количества семёрок, стоящих на нечётных (считая слева), позициях исходного и получившегося чисел равны a и a' соответственно, а количества семёрок, стоящих на их чётных (считая слева), позициях равны b и b' соответственно.

- 1) Пусть $a \ge b$. В таком случае вычёркиваем последнюю, самую правую, цифру. Номера позиций каждой цифры в исходном и получившемся числах совпадают, при вычеркивании пропала цифра с чётной позиции, поэтому $a' = a \ge b \ge b'$.
- 2) Пусть a < b. В таком случае вычёркиваем первую, самую левую, цифру. Номера позиций каждой цифры в исходном и получившемся числах меняют чётность, при вычеркивании пропала цифра с нечётной позиции, поэтому тем более $a' = b > a \ge b'$. **Критерии проверки.** Верно рассмотрен только один из случаев 1) и 2): 3 балла.
- **9.2.** В каждой клетке таблицы 3 на 3 записано некоторое целое число так, что все восемь сумм троек чисел, записанных в клетках каждой строки, каждого столбца и каждой из двух диагоналей, равны одному числу S (то есть таблица является магическим квадратом 3 на 3). Доказать, что S делится на 3.

Доказательство. Обозначим сумму чисел в каждой строке, каждом столбце и обеих диагоналях за S. Рассмотрим сумму чисел в четырёх из рассматриваемых в условии троек: второй строки, второго столбца и двух диагоналей. Она равна с одной стороны 4S, а с другой — сумме всех чисел таблицы плюс угроенное число в центральной клетке. Сумма всех чисел таблицы равна 3S, поэтому S равно угроенному числу в центральной клетке, то есть делится на 3.

9.3. Пусть P – основание высоты, опущенной из вершины A прямоугольного треугольника ABC на его гипотенузу BC, а M – середина отрезка CP. Обозначим за E точку на продолжении стороны AB за точку B такую, что AB=BE. Доказать, что прямые EP и AM перпендикулярны.

Доказательство. Пусть N – точка на катете АС такая, что отрезок МN параллелен высоте АР. Прямоугольные треугольники СМN и АРВ подобны по двум прямым углам АРВ и СМN, а также равным углам ВАР и МСN, поэтому равны отношения их соответствующих сторон СN:АВ и СМ:АР. Следовательно, в треугольниках СМА и АРЕ равны отношения соответствующих сторон CA:AE=2CN:2AB=CN:AB и CM:AP, прилежащих к равным углам МСА= МСN и РАЕ=РАВ. Значит, треугольники СМА и АРЕ тоже подобны, а их соответствующие углы МАС и РЕА равны. Тогда величина угла АЕР равна величине соответствующего ему угла МАС, а сумма углов ЕАМ и АЕР равна 90 градусов, следовательно, угол между прямыми ЕР и АМ равен углу ЕАС, то есть 90 градусов, что и требовалось доказать.

Критерии проверки. Доказано подобие треугольников СМА и АРЕ: 3 балла.

9.4. Определим последовательность $x_1, x_2, x_3, ..., x_{100}$ следующим образом: пусть x_1 -произвольное положительное число, меньшее 1, и $x_{n+1} = x_n - x_n^2$ для всех n = 1, 2, 3, ..., 99. Докажите, что $x_1^3 + x_2^3 + ... + x_{99}^3 < 1$.

Доказательство. Докажем сначала, что $1>x_1>x_2>x_3>...>x_{100}>0$. Для этого воспользуемся индукцией по n=1,2,3,...,99. База индукции $x_1\in(0,1)$ по условию. Шаг индукции: при $x_n\in(0,1)$ выполнены неравенства $0< x_n^{\ 2}< x_n$, поэтому $x_{n+1}=x_n-x_n^{\ 2}< x_n<1$ и $x_{n+1}=x_n-x_n^{\ 2}>0$, то есть $x_{n+1}\in(0,1)$.

Ввиду доказанного, $x_n^3 < x_n^2 = x_n - x_{n+1}$ для всех n = 1,2,3,...,99, поэтому $x_1^3 + x_2^3 + ... + x_{100}^3 < x_1^2 + x_2^2 + ... + x_{100}^2 = x_1 - x_2 + x_2 - x_3 + ... + x_{99} - x_{100} + x_{100}^3 = x_1 - x_{100} + x_{100}^3 < x_1^2 + x_2^2 + ... + x_{100}^2 + x_1^2 + x_2^2 + ... + x_{100}^2 + x_1^2 + x_2^2 + ... + x_{100}^2 + x_1^2 + x_1^2 + x_2^2 + ... + x_{100}^2 + x_1^2 + x_1^2$

Критерии проверки. Доказано, что $1 > x_1 > x_2 > x_3 > ... > x_{100} > 0$: 3 балла.

9.5. На шахматной доске 8 на 8 некоторым образом расставлены 8 ладей, ни одна из которых не бьёт другую. Доказать, что каждую из них можно сдвинуть одновременно в одну из соседних с ней по диагонали клеток таким образом, что и после сдвига ни одна из них не будет бить другую. *Напомним*, что шахматная ладья бьёт все клетки горизонтали и вертикали, в которой она стоит, а клетка, соседняя с данной по диагонали — это клетка, имеющая с ней общую вершину, но не сторону. При перемещении ладья может встать на клетку, в которой ранее стояла другая ладья.

Доказательство. Разделим доску 8 на 8 на 16 квадратиков 2 на 2 клетки и передвинем каждую попавшую в некоторый квадратик ладью в соседнюю с ней по диагонали клетку этого же квадратика. В частности, если таких ладьи в некотором квадратике окажется две, они поменяются местами. При этом номера вертикалей и горизонталей, в которые сдвигаются ладьи взаимно однозначно определяются номерами вертикалей и горизонталей, в которых ладьи стояли до сдвига. Следовательно, после перестановки две ладьи не могут попасть в одну вертикаль (горизонталь), так как для этого они до неё должны стоять в одной вертикали (горизонтали).

Критерии проверки. Нет явно прописанного обоснования, что после сдвига ни одна ладья не будет бить другую: минус 4 балла.