8.1. Найти все трёхзначные числа, делящиеся на 4, в которых отношение первой цифры ко второй равно отношению второй цифры к третьей.

Ответ. 124, 248, 444, 888, 964.

Решение. Пусть искомое число $n = \overline{abc}$. Из условия следует, что квадрат средней цифры равен произведению крайних, и последняя цифра чётная. Отсюда сразу следует, что и средняя цифра чётная. Переберём возможные средние цифры и найдём все разложения их квадратов в подходящие произведения $b^2 = a \cdot c$, сомножители которых не превосходят 9.

- 1) $b=2, b^2=4=1\cdot 4=2\cdot 2=4\cdot 1$. Первое разложение даёт подходящее число 124, второе и третье на 4 не делятся.
- 2) $b=4, b^2=16=2\cdot 8=4\cdot 4=8\cdot 2$. Первые два разложения дают подходящие числа 248 и 444, последнее не делится на 4.
- 3) $b=6, b^2=36=4\cdot 9=6\cdot 6=9\cdot 4$. Третье разложение даёт подходящие числа 964, первое и второе не делятся на 4.
- 4) $b=8,b^2=64=8.8$, получаем подходящее число 888.
- **8.2.** Из двух городов, расстояние между которыми 105 км, вышли одновременно навстречу друг другу с постоянными скоростями два пешехода и встретились через 7,5 часов. Определить скорость каждого из них, зная, что, если бы первый шёл в 1,5 раза быстрее, а второй в 2 раза медленнее, то они бы встретились через $8\frac{1}{13}$ часа.

Ответ. 6 и 8 км в час.

Решение. Обозначим скорости их за x и y км в час соответственно. Из условия получаем: $\frac{15}{2}(x+y) = 105, \frac{105}{13} \left(\frac{3}{2}x + \frac{1}{2}y\right) = 105 \text{ , откуда } x = 6, y = 8 \text{ .}$

8.3. Какой может быть сумма цифр числа, делящегося на 7?

Ответ. Любое натуральное число, больше либо равное 2.

Решение. Заметим, что числа 21 и 1001 делятся на 7, суммы их цифр равны 3 и 2 соответственно. Значит, чтобы получить сумму цифр, равную чётному числу n , нужно взять число, десятичная запись которого состоит из $\frac{n}{2}$ групп цифр 1001. Соответственно, чтобы получить сумму цифр, равную нечётному числу $^{2n+1}$, нужно взять число, десятичная запись которого состоит из $\frac{n}{2}$ —1 групп цифр 1001 и одной группы цифр 21. Сумма же цифр, равная 1, получиться не может, потому что степени десятки на 7 не делятся.

8.4. На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно такие, что $\square ACB = 2 \square BED$. Доказать, что $\square AC + EC > AD$.

Доказательство. Продолжим DE до пересечения с продолжением стороны AC, и PE параллельно стороне AC. Тогда угол CFE равен углу PED, а PED равен углу BED по условию. Следовательно, угол CFE равен углу FEC и CE = CF, AC+CE=AF. В треугольнике DEP угол PDE больше угла DEP, потому, что он равен сумме BED=DEP и EBD, как

внешний угол в треугольнике BDE. Следовательно, и угол ADF больше угла AFD, значит отрезок AF, лежащий против большего угла ADF, больше отрезка AD, лежащего против меньшего угла AFD.

8.5. На клеточной доске размера 10 на 10 отмечены некоторые 10 клеток. При каком наибольшем n независимо от того, какие клетки отмечены, всегда можно найти прямоугольник из нескольких клеток, периметр которого будет не меньше n ? Длина или ширина прямоугольника может равняться одной клетке.

Ответ. n = 20.

Решение. Сначала докажем, что при n=20 найти такой прямоугольник всегда возможно. Пусть закрашено 10 клеток. Если есть столбец или строка без закрашенных клеток, то из неё можно вырезать прямоугольник 1×9 периметра 20 (даже 1 на 10 периметра 22). Пусть теперь в каждом столбце и в каждой строке есть закрашенная клетка. Если в верхней строке закрашенная клетка стоит в столбце под номером k, то из этого столбца можно снизу вырезать прямоугольник 1×9 периметра 20.

При n=22 требуемое получится не всегда. Для этого закрасим клеточки по диагонали. При этом прямоугольник можно вырезать только из нижней (или только из верхней части), но тогда сумма длины и ширины не может превышать 10, а весь периметр – 20.