Решения задач Заключительного этапа Всесибирской олимпиады школьников 2012-2013 г.г. по математике 10 класс

Каждая задача оценивается в 7 баллов

10.1. Какие две цифры нужно дописать справа к числу 2013, чтобы полученное шестизначное число делилось на 101? Найти все возможные варианты ответа.

Ответ. 94, полученное число будет равно 201394.

Решение. Остаток от деления числа 2013xy на 101 равен xy+7 и это должно делиться на 101. Это больше 0, но меньше 202, поэтому $\overline{xy}+7=101, \overline{xy}=94, x=9, y=4$.

Оценивание. Просто ответ с проверкой: 1 балл. Необоснование $\overline{xy} + 7 = 101$ - минус балл.

10.2. Решить уравнение: $\sqrt[3]{20-x} - \sqrt[3]{13-x} = \sqrt[3]{7}$.

Ответ. 20 и 13.

Решение. Если всё тупо возвести в куб и привести подобные, получим $\sqrt[3]{20-x}\sqrt[3]{13-x}(\sqrt[3]{20-x}-\sqrt[3]{13-x})=0$. Скобка не равна 0, поэтому либо x=20, либо x=13.

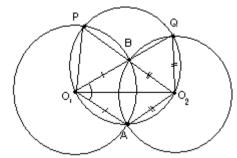
Оценивание. Просто ответ с проверкой: 1 балл. Потеря решения – минус 3 балла.

10.3. Окружности с центрами O_1 и O_2 пересекаются в двух точках A и B. Пусть P и Q - точки пересечения окружности, описанной вокруг треугольника

 O_1AO_2 с первой и второй окружностями соответственно. Доказать, что отрезки O_1Q и O_2P пересекаются в точке B.

Решение. Нам достаточно доказать, что точка B принадлежит отрезкам $O_1 Q$ и $O_2 P$.

Треугольники O_2O_1B и O_2O_1A равны по трём сторонам, поэтому $\angle O_2O_1B=\angle O_2O_1A$. С другой стороны, отрезки O_2A и O_2Q равны, как радиусы, поэтому $\angle O_2O_1A=\angle O_2O_1Q$, как опирающиеся на одинаковые дуги в



окружности, описанной около треугольника O_2O_1A . Следовательно, $\angle O_2O_1B=\angle O_2O_1A=\angle O_2O_1Q$, поэтому точки O_1 , B и Q лежат на одной прямой. Аналогично доказывается, что точки O_2 , B и P тоже лежат на одной прямой.

10.4. В клетках доски 8 на 8 расставлены фишки так, что для каждой фишки горизонталь либо вертикаль доски, в которых она лежит, содержит всего одну фишку. Каково максимально возможное количество фишек на доске? **Ответ.** 14.

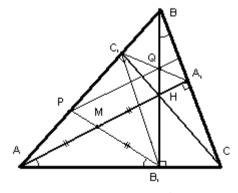
Решение. Сопоставим каждой фишке ту горизонталь либо вертикаль доски, в которой она единственна. Если она единственна в них обеих, сопоставим горизонталь. Из условия следует, что разным фишкам сопоставлены разные горизонтали и вертикали. Если не все горизонтали и не все вертикали сопоставлены, то их общее число не превосходит 14, в каждой из них не более одной фишки, всего фишек не более 14. Если же сопоставлены, скажем, все горизонтали, то в каждой горизонтали стоит по фишке – всего 8.

Пример расстановки 14 фишек: заполнены все клетки левой вертикали и нижней горизонтали, кроме левой нижней угловой клетки.

Оценивание. Оценка 5 баллов. Пример 2 балла. Любая неверная оценка с любыми рассуждениями – 0 баллов.

10.5. В остроугольном треугольнике ABC точки A_1, B_1, C_1 являются основаниями высот, опущенных из вершин A, B, C соответственно, а H — точка пересечения высот. Точка M — середина AH, Q — точка пересечения отрезков BH и A_1C_1 , а P - точка пересечения прямой B_1M и стороны AB. Доказать, что прямая PQ перпендикулярна стороне BC.

Решение. Достаточно показать, что PQ параллельна AA_1 . Последнее равносильно тому, что $AP:PC_1=A_1Q:QC_1$. Хорошо известен факт подобия между собой треугольников $ABC,AB_1C_1,BC_1A_1,CA_1B_1$, то есть исходного и трёх, каждый из которых образован соответствующей вершиной исходного и двумя основаниями высот. Подобие, например ABC и BC_1A_1 , короче всего может быть доказано с помощь



отношений: $A_1B:AB=\cos\angle B=C_1B:CB$ соответствующих сторон при общем угле B. Из данных подобий вытекает подобие треугольников AB_1C_1 и A_1BC_1 , при котором соответствующими являются вершины A и A_1 , B и B_1 . Далее

заметим, что из равенства углов

 $\angle AB_1P = \angle MB_1A = \angle MAB_1 = 90 - \angle C = \angle A_1BB_1 = \angle A_1BQ$ вытекает, что точки P и Q тоже являются соответствующими при данном подобии. Отсюда сразу следует требуемое отношение $AP: PC_1 = A_1Q: QC_1$.

Оценивание. Доказано подобие треугольников AB_1C_1 и $A_1BC_1:2$ балла. Замечено равенство $\angle AB_1P=\angle A_1BQ:1$ балл.

.