

XIX Санкт-Петербургская астрономическая олимпиада

заочный отборочный тур, решения

12 декабря 22 января

2011 - 2012

11 класс

1. PSR 0406+62, PSR 1455-33, PSR 2617+98, PSR 1913+16, PSR 2155-31. Что лишнее в этом списке? Ответ обоснуйте.

Решение:

Это стандартные обозначения пульсаров (PSR — сокращение от "pulsar"). Цифры — это экваториальные координаты пульсара (прямое восхождение в часах и минутах и склонение в градусах (со знаком). Внимательно посмотрев на список, можно обнаружить, что **третий объект** в нем имеет прямое восхождение $\alpha = 26^h17^m$ и склонение $\delta = +98^\circ$, что явно лишено смысла. Он и является лишним — такого пульсара не существует.

2. Представьте, что на Солнце есть одно большое пятно, занимающее ровно половину всей поверхности Солнца. Оцените температуру этого пятна, если звездная величина такого Солнца при вращении меняется на 1^m .

Решение:

Максимальное изменение звездной величины такого Солнца будет в том случае, если мы в один момент наблюдаем только ту сторону, где расположено пятно (т.е. наблюдаем только пятно), а в другой момент — только «чистую» поверхность Солнца. Тогда мы можем представить себе, что наблюдаем рядом две звезды одинакового радиуса и на одинаковом расстоянии от нас, но с видимыми звездными величинами, отличающимися на 1^m . По формуле Погсона

$$m_{\text{пят}} - m_{\odot} = -2.5 \lg \frac{E_{\text{пят}}}{E_{\odot}},$$

где «пят» относится к полностью запятненному Солнцу, а \odot — к «нормальному» Солнцу; m — звездные величины соответствующих звезд, а E — создаваемые ими на Земле освещенности.

Известно, что освещенность, создаваемая звездой на Земле, зависит от расстояния до этой звезды и от ее светимости, которая, в свою очередь, зависит от радиуса звезды и ее температуры. Т.к. рассматриваемые звезды находятся от Земли на равном расстоянии и имеют равные радиусы, то отношение создаваемых ими освещенностей, а, следовательно, и разность звездых величин, определяется только отношением температур этих звезд. Светимость звезды L зависит от ее температуры T как $L \propto T^4$, следовательно,

$$m_{\text{пят}} - m_{\odot} = -2.5 \lg \frac{T_{\text{пят}}^4}{T_{\odot}^4} = -10 \lg \frac{T_{\text{пят}}}{T_{\odot}}.$$

Так как $m_{\text{пят}} - m_{\odot} = 1$, то

$$\lg \frac{T_{\text{пят}}}{T_{\odot}} = -\frac{1}{10},$$

$$\frac{T_{\text{пят}}}{T_{\odot}} = 10^{-\frac{1}{10}} \approx 0.8,$$

отсюда $T_{\text{пят}} \approx 0.8 T_{\odot} \approx 4800 \, \text{K}.$

3. Метеороид вошел в земную атмосферу со второй космической скоростью на высоте 100 км и сгорел за 1 с. Предполагая, что это явление наблюдал астроном, находящийся точно под точкой входа, оцените максимально возможный наблюдаемый угловой размер следа метеора.

Решение:

Вторая космическая скорость на такой высоте мало отличается от нее же на поверхности Земли, и для оценки можно принять ее равной 11 км/с. Следовательно, метеороид пролетел 11 км. Максимально возможный угол φ , под которым можно увидеть этот отрезок с расстояния 100 км, можно определить из условия $\operatorname{tg} \varphi = 11/100$ и, так как этот угол достаточно мал, можно считать его приближенно равным $\varphi \approx 11/100$ радиана, т.е. $\mathbf{6}^{\circ}$.

4. Высота спутника Земли над ее поверхностью меняется от 600 до 7600 км. Оцените эксцентриситет орбиты спутника.

Решение:

Известно, что расстояние от центра притяжения до тела на эллиптической орбите меняется от минимального (в перицентре), равного $r_{\Pi}=a(1-e)$, до максимального (в апоцентре), равного $r_{A}=a(1+e)$, где a — большая полуось орбиты, e — ее эксцентриситет. Отсюда, после небольших преобразований, можно записать систему уравнений:

$$\begin{cases} r_{\Pi} + r_A &= 2a \\ r_A - r_{\Pi} &= 2ae, \end{cases}$$

Откуда

$$e = \frac{r_A - r_\Pi}{r_\Pi + r_A}.$$

Очевидно, что для спутника Земли $r_{\Pi}=R_{\oplus}+h_{\Pi}$, а $r_{A}=R_{\oplus}+h_{A}$, где R_{\oplus} — радиус Земли, а h_{Π} и h_{A} — высоты в перигее и апогее, соответственно. Тогда, преобразовав формулы и подставив числа, получаем

$$e = \frac{h_A - h_\Pi}{2R_\oplus + h_A + h_\Pi} \approx \frac{7600 - 600}{12800 + 7600 + 600} = \frac{\mathbf{1}}{\mathbf{3}}.$$

5. При наблюдении с Земли звезды солнечного типа было замечено прохождение планеты по ее диску, повторяющееся с периодом 50 суток. Оцените время прохождения, если известно, что орбита планеты круговая.

Решение:

Запишем линейную скорость движения планеты по орбите. Она, поскольку орбита круговая, равна

$$v = \sqrt{\frac{GM}{r}},$$

где G — гравитационная постоянная, M — масса звезды, r — радиус орбиты планеты. Поскольку период повторения прохождений P совпадает с периодом обращения планеты вокруг звезды, то он нам известен, и мы можем связать с ним и величиной v радиус орбиты:

$$P = \frac{2\pi r}{v}.$$

Отсюда получаем

$$v = \sqrt{\frac{GM}{vP}} \, 2\pi$$

и выражаем отсюда v:

$$v = \sqrt[3]{\frac{2\pi GM}{P}}.$$

Так как радиус звезды R существенно меньше радиуса орбиты планеты r, то можно считать, что максимальное время равно времени, которое потребуется планете для того, что-бы пройти диаметр звезды 2R. Отсюда

$$T = \frac{2R}{v}$$
.

Подставив числовые данные, получаем результат: $T \approx 9 \cdot 10^4 \; \text{c}$, т.е. примерно **1 сутки**.