Задание 8.1 Рогатка и пробка с монетками

Известно, что есть придать телу некоторую начальную энергию E, то при дальнейшем поступательном движении по однородной горизонтальной поверхности оно пройдет путь S до остановки, который можно определить по следующей формуле:

$$S = \frac{E}{2 \cdot \mu \cdot M \cdot g}$$

Здесь μ – коэффициент трения между телом и горизонтальной поверхностью,

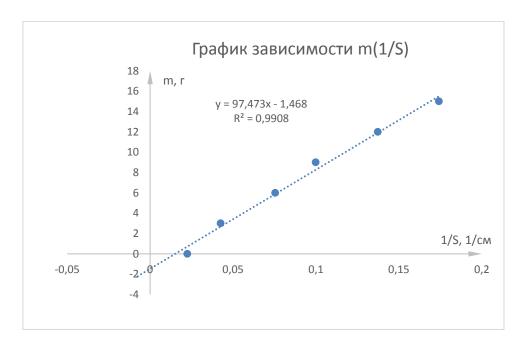
g - ускорение свободного падения

М – масса тела

Вам выдана установка, предназначенная для запуска пробки с некоторой начальной энергией, которая зависит только от растяжения резинки. Чем сильнее растягивать резинку, тем большую начальную энергию приобретает пробка. Массу запускаемого тела можно менять, добавляя в нее монетки, скрепленные скотчем.

- Запуская тело с одной и той же начальной энергией, снимите зависимость дальности движения тела от массы монеток, добавленных в пробку. Каждое измерение проведите не менее пяти раз и усредните. Полученные данные занесите в таблицу. Для увеличения точности постарайтесь добиться максимальной дальности движения.
- На миллиметровке постройте график зависимости массы монеток от обратного расстояния $m\left(\frac{1}{c}\right)$
- Определите как можно более точно массу пробки.

Оборудование: Установка для запуска пробки, пробка, пять монеток, массой 3 г каждая, измерительная лента, миллиметровка для построения графиков.


Примечание: При выполнении работы следите за тем, чтобы пробка по возможности не вращалась в процессе движения и за тем, чтобы монетки не ударялись о стенки пробки.

Возможное решение.

1. Запускаем пробку с одной и той же отметки и следим за тем, чтобы прочие условия запуска так же были одинаковы. Повторяя это не менее 5 раз, отмечаем на поле положения пробки. Кладем в пробку монетки и повторяем эксперимент. Измеряем расстояние, пройденное пробкой в проведенных опытах, заносим данные в таблицу:

	_	_	_	_		_
N	0	1	2	3	4	5
т, г	0	3	6	9	12	15
S1, cm	36,3	19,4	10,8	8,9	6,5	6,1
S2, cm	39,5	20,7	11,8	9,5	6,5	6,7
S3, cm	40,8	21,4	12,2	10	6,7	5,6
S4, cm	41,1	22	13,2	9,4	7,1	6
S5, cm	43,8	23,2	13	9,7	7,1	5,8
S6, cm	45,5	24	13,3	10,1	7,2	5,8
S7, cm	47,1	23,6	13,1	10,5	7,7	5,5
S8, cm	47,3	26,7	14	11	7,7	5,5
S9, cm	49,5	26,6	15,4	11	7,9	5,1
S10, cm	53,4	27,3	15,7	10	8,4	5,3
Ѕсред, см	44,43	23,49	13,25	10,01	7,28	5,74
1/Ѕсред, 1/см	0,022507	0,042571	0,075472	0,0999	0,137363	0,174216

2. По полученным данным строим график зависимости m(1/S):

3. Находим теоретическую зависимость массы монеток от обратного расстояния, пройденного пробкой.

По условию:

$$S = \frac{E}{2 \cdot \mu \cdot (m + m_{\text{npo6}}) \cdot g}$$

Путем нехитрых математических преобразований получаем:

$$m = \frac{E}{2 \cdot \mu \cdot g} \cdot (\frac{1}{S}) - m_{\text{npo6}}$$

Данная зависимость является линейной, поэтому ее графиком будет являться прямая.

4. Масса пробки находится как точка пересечения графика с осью ординат.

Критерии оценивания (максимум 15 баллов).

1	Снята экспериментальная зависимость S(m): По 1 баллу за пару m и S, если снято 7 и более измерений По 0,5 баллов за пару m и S, если снято 5 и более измерений По 0 баллов за пару m и S, если снято менее 5 измерений Максимум 6 баллов	6
2	Показано, что теоретическая зависимость m(1/S) линейная $(\text{формула}\ m = \frac{E}{2\cdot \mu \cdot g} \cdot \left(\frac{1}{S}\right) - m_{\text{проб}})$	3
3	График зависимости $m(1/S)$: а) отложены единицы измерения по осям $(0,5$ балла) b) выбран рациональный масштаб по осям $(0,5$ балла) c) нанесены шкалы на оси $(0,5$ балла) d) соответствие точек, нанесённых на график, табличным значениям $(0,5$ балла) e) проведена прямая $m(1/S)$: $(1$ балл)	3
4	Получено значение массы пробки $m_{\rm проб}$ попадает в интервал от 1,5 г до 2,5 г – 3 балла $m_{\rm проб}$ попадает в интервал от 1,0 г до 3,0 г – 2 балла $m_{\rm проб}$ попадает в интервал от 0,5 г до 3,5г – 1 балл Максимум 3 балла	3

Задание 8.2. Волшебная коробочка и резисторы

Вам выдана волшебная коробочка, с некоторой электрической схемой внутри. Изменять схему в этой коробочке запрещено, дабы не испортить устройство. Из коробочки выходит два провода, к которым можно подключать резисторы с помощью макетной платы. Так же в коробочку встроен светодиод, который периодически загорается через равные промежутки времени, если к проводам подключен резистор. С помощью волшебной коробочки, секундомера и резистора сопротивлением 560 кОм определите как можно более точно сопротивления оставшихся резисторов. Известно, что сопротивления трех из них одинаковы.

Оборудование: волшебная коробочка, 3 одинаковых резистора с неизвестным сопротивлением, резистор сопротивлением 560 кОм, еще два резистора с неизвестным сопротивлением, макетная плата, секундомер, миллиметровая бумага для построения графиков.

Примечание: В случае поломки прибора, немедленно отключите его от питания и позовите дежурного организатора. Примерное устройство макетной платы представлено на рисунке.

Возможное решение.

- 1. Подключая к коробочке различные резисторы заметим, что период работы светодиода зависит от сопротивления подключаемого резистора, таким образом, определим три одинаковых резистора для которых период работы светодиода одинаков.
- 2. Подключая к коробочке три одинаковых резистора различными способами, получаем зависимость периода работы светодиода т от сопротивления соединения резисторов R:

Соединение	4	-	-0-0-0-	中			
R	r	2r	3r	r/2	r/3	3r/2	2r/3
τ, c	2,2	4,4	6,6	1,1	0,72	3,2	1,4

Здесь r — неизвестное нам сопротивление одного из одинаковых резисторов При этом период работы светодиода находим, как отношение времени нескольких периодов к их количеству:

$$\tau = \frac{\Delta t_n}{n}$$

3. Строим полученную зависимость на графике и понимаем, что период работы светодиода прямо пропорционален сопротивлению подключаемого соединения:

 $\tau = kR$, где k некоторая константа

4. Зная сопротивление одного из резисторов, и измеряя период работы светодиода при подключении этого резистора, находим эту константу:

$$k = \frac{\tau}{R} = \frac{12.3 \text{ c}}{560 \text{ kOm}} = 0.022 \text{ c/kOm}$$

5. Используя полученные данные и измеряя период работы светодиода при подключении остальных резисторов, определяем их сопротивления:

$$R = \frac{\tau}{k}$$

 $r = 97.6 \text{ кОм}(истинное значение 99.6 кОм)}$

 $R_1 = 21,3$ кОм(истинное значение 22 кОм)

 $R_2 = 53,7$ кОм(истинное значение 53,9 кОм)

Аналогичные ответы можно получить сразу из графика, не вычисляя константу k.

Критерии оценивания (максимум 15 баллов).

1	Определены три одинаковых резистора	1
2	Измерен период работы светодиода при различных	7
	подключениях одинаковых резисторов	
	с точностью не хуже 5% - по 1 баллу за соединение	
	с точностью не хуже 10% - по 0,5 баллу за соединение	
3	График зависимости $\tau(R)$:	3
	а) отложены единицы измерения по осям (0,5 балла)	
	b) выбран рациональный масштаб по осям (0,5 балла)	
	с) нанесены шкалы на оси (0,5 балла)	
	d) соответствие точек, нанесённых на график,	
	табличным значениям (0,5 балла)	
	е) проведена прямая $\tau(R)$: (1 балл)	
4	Сделан вывод, что зависимость $\tau(R)$ прямо	0,5
	пропорциональная	
5	Определен коэффициент пропорциональности	0,5
	зависимости $\tau(R)$, или масштаб по оси сопротивлений на	
	графике $\tau(R)$	
6	Определено сопротивление г	1
	с точностью не хуже 5% - 1 балл	
	с точностью не хуже 10% - 0,5 балла	
7	Определено сопротивление R ₁	1
	с точностью не хуже 5% - 1 балл	
	с точностью не хуже 10% - 0,5 балла	
8	Определено сопротивление R ₂	1
	с точностью не хуже 5% - 1 балл	
	с точностью не хуже 10% - 0,5 балла	