1	Герасим взял плотную прямоугольную дощечку и вбил в неё гвозди ${\bf a}, {\bf b}, {\bf c}, {\bf d}, {\bf e}$. Гвозди ${\bf a}, {\bf b}, {\bf c}$ вбиты в середины сторон, гвозди ${\bf d}, {\bf e}$ — в углы дощечки. К гвоздям Герасим прикрепил шесть кусков проволоки, как показано на рисунке. Затем он стал медленно и равномерно опускать дощечку в проводящую жидкость, приложив разность потенциалов U между гвоздём ${\bf a}$ и жидкостью. Дощечка всё время расположена в вертикальной плоскости, отрезок ${\bf d}{\bf e}$ горизонтален. Схема погрузилась в жидкость целиком за время 2τ . Найдите зависимость полного тока в цепи от времени t , прошедшего с начала погружения. Сопротивление каждого куска проволоки указано на рисунке (величина t известна). Проволока не покрыта изоляцией; каждый из её кусков имеет постоянную толщину. Сопротивление жидкости и гвоздей пренебрежимо мало. Дощечка не проводит ток.	$ \begin{array}{c} \mathbf{a} \\ \mathbf{c} \\ 2R \\ \mathbf{d} \end{array} $ $ \begin{array}{c} \mathbf{c} \\ 2R \\ \mathbf{e} \end{array} $
2	На длинную туго натянутую нить нанизаны металлические бусины 1, 2 и 4, а также обладающая магнитными свойствами бусина 3, притягивающая к себе металл. Если от слиппихся бусин 1, 2 и 3 отлепить бусину 4 и отодвинуть её на расстояние x от центра соседней с ней бусины 3, то на неё будет действовать сила $F_1(x)$, стремящаяся вернуть её обратно (рис. a). Если же от бусин 2, 3, 4 отлепить бусину 1 и отодвинуть её на расстояние x от центра соседней с ней бусины 2, то на неё будет действовать возвращающая сила $F_2(x)$ (рис. b). Графики $F_1(x)$ и $F_2(x)$ представлены на отдельном листе. В сторону изначально покоящихся слиппихся бусин 1, 2 и 3 с большого расстояния запускают со скоростью b 0 бусину 4 (рис. b 0). Какую скорость будет иметь бусина 1 через большой промежуток времени после всех соударений? Все бусины имеют одинаковую массу b 0. На графике в качестве масштаба по оси ординат дана величина b 0 b 1. Бусины сталкиваются абсолютно упруго. Трением пренебречь.	a) x $-12\overline{\smash{\big)}}_{F_1(x)}$ $6) \qquad v$ $-12\overline{\smash{\big)}}_{F_2(x)}$
3	Клоун Вайз решил исследовать карусель — диск, который можно раскручивать вокруг вертикальной оси OO' . Он поставил на карусель с противоположных сторон от OO' на равном расстоянии R от оси два одинаковых тонких столбика (см. рис.). Связав верхушки столбиков лёгкой нерастяжимой нитью длиной $2R$, Вайз раскрутил карусель до угловой скорости ω . При каком значении коэффициента трения столбики останутся стоять на раскрученной карусели? Считайте, что вся масса столбика сосредоточена на его концах: на верхнем конце 30% , а на нижнем 70% . Ускорение свободного падения g .	10° 30% 2 <i>R</i> 70% 70% КАРУСЕЛЬ
4	В неподвижной трубе переменного диаметра имеются два подвижных поршня площадью S и $3S$. Между ними залита вода объёмом V . На нижнем поршне посередине закреплён источник света Π . В верхний поршень вмонтировано вогнутое зеркало 3 , имеющее фокусное расстояние f . К нижнему поршню прикладывают силу F , направленную вверх. На каком расстоянии x от зеркала окажется изображение в нём лампочки Π , если система находится в равновесии? Постройте график $\pi(F)$. Плотность воды $\pi(F)$ 0 и ускорение свободного падения $\pi(F)$ 1 известны. Весом поршней, лампочки и зеркала пренебречь. Трением поршней о трубу пренебречь. Считайте, что снаружи системы вакуум.	3 3 3S
5	Два одинаковых маленьких массивных шара A и Б закрепили на концах лёгкого прочного стержня длиной L . Получившуюся гантель расположили на высоте $9L$, как показано на рисунке, и отпустили. Скорость, с которой гантель ударилась о землю, измерили. Затем гантель снова разместили так же на той же высоте, и снова отпустили. Но на этот раз в момент начала полёта нижнему шару ударом придали горизонтальную скорость, в точности равную скорости, которую измерили в первом опыте. Какой из шаров ударится о землю первым? Сопротивлением воздуха пренебречь.	A B B B B B B B B B B B B B B B B B B B

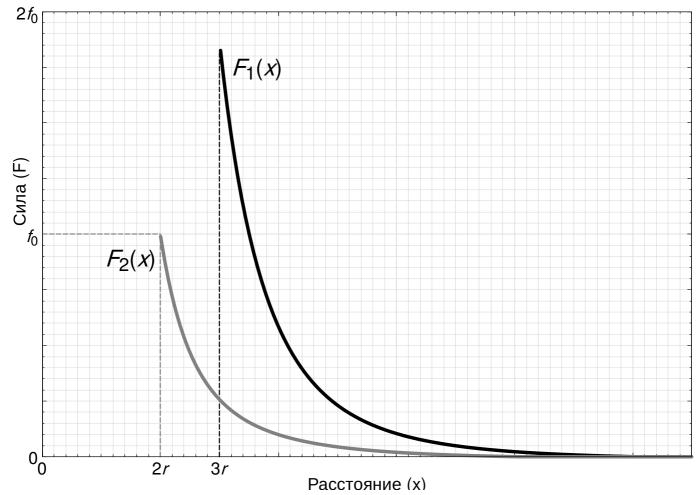


График к задаче 2 (1
й вариант)

1	Герасим взял плотную прямоугольную дощечку и вбил в неё гвозди ${\bf a}, {\bf b}, {\bf c}, {\bf d}, {\bf e}$. Гвозди ${\bf a}, {\bf b}, {\bf c}$ вбиты в середины сторон, гвозди ${\bf d}, {\bf e}$ – в углы дощечки. К гвоздям Герасим прикрепил шесть кусков проволоки, как показано на рисунке. Затем он стал медленно и равномерно опускать дощечку в проводящую жидкость, приложив разность потенциалов U между гвоздём ${\bf a}$ и жидкостью. Дощечка всё время расположена в вертикальной плоскости, отрезок ${\bf d}{\bf e}$ горизонтален. Схема погрузилась в жидкость целиком за время 2τ . Найдите зависимость полного тока в цепи от времени t , прошедшего с начала погружения. Сопротивление каждого куска проволоки указано на рисунке (величина R известна). Проволока не покрыта изоляцией; каждый из её кусков имеет постоянную толщину. Сопротивление жидкости и гвоздей пренебрежимо мало. Дощечка не проводит ток.	\mathbf{a} $4R$ $4R$ $4R$ $4R$ e
2	На длинную туго натянутую нить нанизаны металлические бусины 1, 2 и 4, а также обладающая магнитными свойствами бусина 3, притягивающая к себе металл. Если от слиппихся бусин 1, 2 и 3 отлепить бусину 4 и отодвинуть её на расстояние x от центра соседней с ней бусины 3, то на неё будет действовать сила $F_1(x)$, стремящаяся вернуть её обратно (рис. a). Если же от бусин 2, 3, 4 отлепить бусину 1 и отодвинуть её на расстояние x от центра соседней с ней бусины 2, то на неё будет действовать возвращающая сила $F_2(x)$ (рис. b). Графики $F_1(x)$ и $F_2(x)$ представлены на отдельном листе. В сторону изначально покоящихся слиппихся бусин 1, 2 и 3 с большого расстояния запускают со скоростью v бусину 4 (рис. b). Какую скорость будет иметь бусина 1 через большой промежуток времени после всех соударений? Все бусины имеют одинаковую массу v 0. Металлические бусины имеют радиус v 1. Каждая, а магнитная — радиус v 2. На графике в качестве масштаба по оси ординат дана величина v 3. Бусины сталкиваются абсолютно упруго. Трением пренебречь.	a) $ \begin{array}{c} x \\ \hline 12 \\ \hline 3 \\ \hline F_1(x) \end{array} $ 6) $ \begin{array}{c} x \\ \hline F_2(x) \end{array} $ 3 $ \begin{array}{c} 4 \\ \hline \end{array} $
3	Клоун Вайз решил исследовать карусель — диск, который можно раскручивать вокруг вертикальной оси OO' . Он поставил на карусель с противоположных сторон от OO' на равном расстоянии R от оси два одинаковых тонких столбика (см. рис.). Связав верхушки столбиков лёгкой нерастяжимой нитью длиной $2R$, Вайз раскрутил карусель до угловой скорости ω . При каком значении коэффициента трения столбики останутся стоять на раскрученной карусели? Считайте, что вся масса столбика сосредоточена на его концах: на верхнем конце 40% , а на нижнем 60% . Ускорение свободного падения g .	10° 40% 2R 60% 60% КАРУСЕЛЬ
4	В неподвижной трубе переменного диаметра имеются два подвижных поршня площадью S и $3S$. Между ними залита вода объёмом V . На верхнем поршне посередине закреплён источник света Π . В нижний поршень вмонтировано вогнутое зеркало 3 , имеющее фокусное расстояние f . К нижнему поршню прикладывают силу F , направленную вверх. На каком расстоянии x от зеркала окажется изображение в нём лампочки Π , если система находится в равновесии? Постройте график $\pi(F)$. Плотность воды $\pi(F)$ 0 и ускорение свободного падения $\pi(F)$ 1 известны. Весом поршней, лампочки и зеркала пренебречь. Трением поршней о трубу пренебречь. Считайте, что снаружи системы вакуум.	З 3 3S
5	Два одинаковых маленьких массивных шара A и Б закрепили на концах лёгкого прочного стержня длиной L . Получившуюся гантель расположили на высоте $12L$, как показано на рисунке и отпустили. Скорость, с которой гантель ударилась о землю, измерили. Затем гантель снова разместили так же на той же высоте, и снова отпустили. Но на этот раз в момент начала полёта нижнему шару ударом придали горизонтальную скорость, в точности равную скорости, которую измерили в первом опыте. Какой из шаров ударится о землю первым? Сопротивлением воздуха пренебречь.	12 <i>L</i>

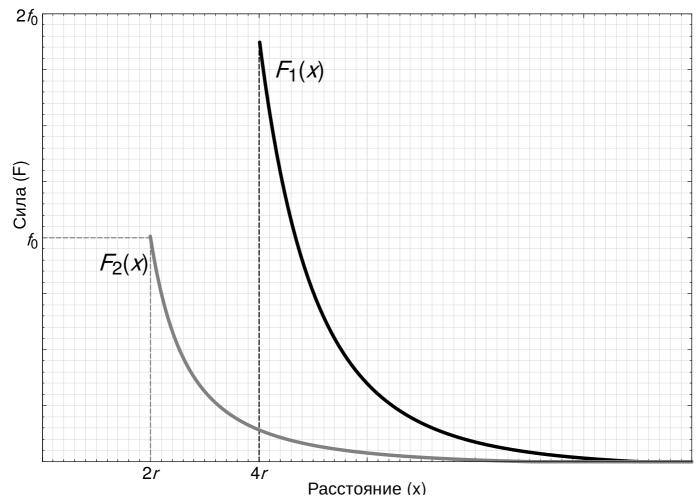


График к задаче 2 (2
й вариант)