РЕШЕНИЯ ЗАДАЧ

Задача 1

Обозначим x — искомое число, s — сумма его цифр. Тогда $x=3\cdot 17\cdot s^2$. Следовательно, x делится нацело на 3. По признаку делимости на 3, число s делится на 3. Но тогда x делится на 9. По признаку делимости на 9, s делится на 9. Так как искомое число пятизначное, то для s возможны 5 вариантов: s=9, s=18, s=27, s=36, s=45. Для каждого s, соответственно, находим: x=4131, x=16524, x=37179, x=66096, x=103275. Первое и последнее — не пятизначные, у четвертого сумма цифр не равна 36. Подходящие: x=16524, x=37179.

OTBET: 37179.

Задача 2

Расположим числа в порядке возрастания: -5; -3; 2; 7; **8**; 9; 12; 19; 25. Покажем, что выделенное среднее число **8** является искомым. Обозначим s(y) - сумма расстояний от числа y до остальных чисел. Рассмотрим число y = 8 + x. Если $x \in (0; 1)$, то сумма расстояний от y до первых четырех чисел увеличится на 4x, а до последних четырех –

уменьшится на 4x (по сравнению с числом 8), и при этом до самого числа 8 расстояние равно x, то есть s(y) = s(8) + x. Если x = 1, то есть y = 9, то сумма расстояний от y до всех чисел будет равна s+1. Рассуждая аналогично при $x \in (1; +\infty)$, получим вывод: минимальное значение s(y) достигается при y = 8. При отрицательных значениях xрассуждения ничем не отличаются.

OTBET: 8.

Залача 3

Указанную в условии таблицу 4×4, можно построить следующим образом: положим элементы верхнего левого угла размеров 3×3, произвольным образом, после чего заметим, что все оставшиеся элементы определяются однозначно из линейных (по модулю 3) соотношений для строк и столбцов (при этом элемент в правом нижнем углу будет равен сумме по модулю 3 всех остальных элементов квадрата). Плюс к этому имеем два линейных соотношения для элементов диагоналей. Таким образом, общее число независимого выбора переменных $a_{i,j}$, i,j=1,2,3 равно 7. Следовательно, общее число ключей равно $3^7=2187$. **OTBET:** 2187.

Задача 4

(*) Покажем, что $(s \ll c) = r_{31}(s \cdot 2^c)$

Заметим, что достаточно доказать для c = 1.

Пусть $s = (s_4 s_3 s_2 s_1 s_0)_2$. Если $s_4 = 0$, то равенство (*) очевидно.

Если $s_4=1$, то $s=16+2^3\cdot s_3+2^2\cdot s_2+2\cdot s_1+s_0$. Тогда $r_{31}(s\cdot 2)=2^4\cdot s_3+2^3\cdot s_2+2^2\cdot s_1+2\cdot s_0+1=(s\ll c)$, и равенство (*)

Следовательно,

$$a_1 = ((a+k_1) \ll c_1) = r_{31}((a+k_1) \cdot 2^{c_1}) = r_{31}(a \cdot 2^{c_1} + k_1 \cdot 2^{c_1})$$
(1)

То есть, на одном шаге шифрования - линейное преобразование числа a по правилу (1). Так как композиция линейных преобразований есть линейное преобразование, то $a_{32} =$ $(a \cdot x + k)$, где x и k – неизвестные.

Воспользуемся тем, что на этом ключе буква $\bf b$ переходит в букву $\bf b$, а буква $\bf \Pi$ – в $\bf E$:

$$27 = (25 \cdot x + k), 5 = (14 \cdot x + k)$$
 (по модулю 31).

Вычитая из первого равенства второе, получим: $22 = 11 \cdot x$. Отсюда x = 2. Тогда 27 = 12 $(25 \cdot 2 + k)$ (по модулю 31) и, следовательно, k = 8. Окончательно получили:

 $a_{32}=(a\cdot 2+8)$. Тогда $a=2^{-1}(a_{32}-8)=16\cdot a_{32}+27$ (можно было сразу решать уравнение $a = (a_{32} \cdot x + k)$). Последовательно подставляя буквы шифрованного текста ЯГКЫНИ получим исходное слово МОСКВА.

OTBET: MOCKBA.

Залача 5

Рассмотрим произвольную букву открытого и шифрованного соответствующих им (по таблице) чисел x и z' выполняются равенства x = y + pz и z =y + qx, при некотором y, p и q. При этом по условию $z' = r_{32}(z)$. Используя свойство сравнений по модулю целого числа, получим: $x - z' = pz' - qx \pmod{32}$ или x(1+q) = $z'(1+p) \pmod{32}$.

Для дальнейшего решения будем пользоваться следующим свойством: если наибольший общий делитель чисел a и n равен 1, то сравнение $x = y \pmod{n}$ равносильно $ax = y \pmod{n}$ $ay(mod\ n)$. Используя условие задачи для первой буквы открытого и шифрованного текста, получим равенство $2(1+q) = 6(1+p) \pmod{32}$.

Заметим, что сравнение $6t = 2 \pmod{32}$ имеет 2 решения по модулю 32: $t = 11 \pmod{32}$, $t=27 (mod\ 32)$. Тогда получим, что $11\cdot (1+q)=(1+p)(mod\ 32)$ или $27\cdot (1+q)=$ $(1+p) (mod\ 32)$ для каждого t. Таким образом, $x=11z' (mod\ 32)$ или $x=27z' (mod\ 32)$ соответственно.

Остается воспользоваться полученными соотношениями для остальных букв. Осмысленное слово получается только при втором варианте. А значит, исходное слово **BEKTOP**. **ОТВЕТ:** ВЕКТОР.

Залача 6

Заметим, что для всех x вектор h(x) содержит четное число единиц, так как

$$(x_1 \oplus x_{n-1}) \oplus (x_2 \oplus x_n) \oplus (x_2 \oplus x_3) \oplus (x_3 \oplus x_4) \oplus \dots, \oplus (x_{n-2} \oplus x_{n-1}) \oplus (x_1 \oplus x_n)$$

$$= 0.$$

Значит в рассматриваемой последовательности $x, h(x), h^{(2)}(x), ..., h^{(k)}(x)$ (1) все векторы, начиная со второго, имеют четное количество единиц. Количество всех векторов, имеющих четное количество единиц, равно 2^{n-1} . Поэтому претендентом на самое большое количество различных векторов является последовательность (1), начинающаяся с вектора, содержащего нечетное количество единиц и продолжающаяся всеми векторами с четным количеством единиц. Количество векторов в такой последовательности будет $1+2^{n-1}$ Таким образом $k \leq 2^{n-1}$. Для получения оценки $k \leq 2^{n-1}-1$ рассмотрим отдельно случай когда среди векторов последовательности (1) нет нулевого вектора (0,0,...,0) и когда он есть. Если в последовательности (1) нет вектора (0,0,...,0), то она содержит не более $1+(2^{n-1}-1)=2^{n-1}$ векторов и $k \leq 2^{n-1}-1$. Пусть теперь последовательность (1) содержит вектор (0,0,...,0). Рассмотрим два случая.

- 1) Если n нечетное число, то h(0,0,...,0) = h(1,1,...,1) = (0,0,...,0) и других векторов, переходящих в нулевой нет. При этом не существует векторов \mathbf{z} таких, что $h(\mathbf{z}) = (1,1,...,1)$ Таким образом в этом случае последовательность (1) содержит максимум два вектора и $k \leq 2^{n-1} 1$.
- 2) Если n четное число, то h(0,0,...,0) = h(1,1,...,1) = (0,0,...,0) и найдутся два вектора

$$a = (0,0,1,0,1,...,0,1,1)$$
 и $b = (1,1,0,1,0,1,...,0,1,0,0)$

содержащие четное число единиц такие, что $h(\boldsymbol{a}) = h(\boldsymbol{b}) = (1,1,...,1)$. Последовательность (1) не может содержать одновременно векторы \boldsymbol{a} и \boldsymbol{b} , поэтому в этом случае она содержит не более $1 + (2^{n-1} - 1) = 2^{n-1}$ векторов и $k \le 2^{n-1} - 1$.