

9 класс

1. На тело, покоящееся в начале координат, начинает действовать постоянная сила F. Спустя $t_1=20c$ направление силы мгновенно меняется на противоположное. Через некоторое время после этого тело возвращается в начало координат. Найти отношение скорости тела в момент прохождения начала координат к скорости, которой обладало тело в момент $t_1=20\ c$.

2. Шесть одинаковых лампочек соединены, как указано на схеме. Определить сопротивление между точками M и N, если сопротивление каждой лампочки r = 10~Om. Сопротивлением соединительных проводов можно пренебречь.

3 . Определите ускорение груза массы 4 m на приведённой схеме. Все нити считать невесомыми и нерастяжимыми, блоки невесомыми. Ускорение свободного падения $g=10 m/c^2$.

4. В четырёх вершинах квадрата со стороной a=5 км находятся 4 астероида с одинаковой массой $m=4\cdot 10^{15}$ кг, которые вращаются вокруг общего центра масс. Система находится вдали от других звёздных тел. Определите линейную скорость вращения астероидов. Гравитационная постоянная $G=6,67\cdot 10^{-11} \frac{H\cdot \text{M}^2}{\text{KZ}^2}$.

5. Два пластилиновых шара массами m и 2m брошены под углом $\alpha=60^\circ$ с одинаковыми скоростями $V_0=12m/c$. Угол между плоскостями, в которых лежит траектория полёта каждого тела $\beta=53^\circ$. В верхней точке траектории шары сталкиваются и слипаются. С какой скоростью они упадут на землю? Ускорение свободного падения $g=10m/c^2$. Ответ дать в m/c точностью до десятых