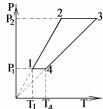
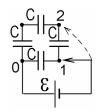


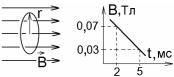
ГОУ ВПО «Тульский государственный университет»


Олимпиада школьников «НАСЛЕДНИКИ ЛЕВШИ» — 2010/11 по физике


Отборочный этап

11 класс

- 1. Две частицы, находящиеся в одной точке в однородном поле тяжести, начали двигаться одновременно с начальными скоростями $\upsilon_{01}=4m/c$ и $\upsilon_{02}=9m/c$, направленными горизонтально в противоположные стороны. Найти расстояние между частицами в тот момент, когда их скорости окажутся взаимно перпендикулярными.
- 2. Две шайбы с массами $m_1 = 20$ г и $m_2 = 30$ г толкнули навстречу друг другу с начальными скоростями $v_{01} = 6$ м/с и $v_{02} = 4$ м/с по гладкой горизонтальной поверхности. Первоначальное расстояние между шайбами L = 18 м. На какое наименьшее расстояние сблизятся шайбы в процессе движения, если на них действуют постоянные силы $F_1 = 0,08$ Н и $F_2 = 0,03$ Н, расталкивающие шайбы друг от друга.
- 3. В покоящуюся на льду шайбу массой $m_1 = 2m$ упруго ударяется другая шайба массой $m_2 = m$. После удара она отлетает перпендикулярно к первоначальному направлению движения. Под каким углом к первоначальному направлению будет двигаться после удара шайба, вначале покоившаяся ?
- 4. Шарик совершает гармонические колебания. Определить отношение скоростей шарика в точках, удаленных от положения равновесия на половину и одну треть амплитуды колебаний.



- 5. Два моля идеального газа совершают замкнутый цикл, изображенный на рисунке. Известно, что температура $T_1=280K$, $\frac{T_4}{T_1}=2$, $\frac{P_2}{P_1}=5$. Найти работу, совершаемую газом за
- 6. Шесть точечных зарядов $q_n = n \cdot q$, где n = 1, 2, 3, ..., 6 расположены на равном удалении от соседних зарядов на окружности радиуса R = 1 м. Величина силы, действующей на точечный заряд q, помещенный в центр этой окружности, равна F = 0.054 H, $k = 1/4\pi\epsilon_0 = 9 \cdot 10^9$ Ф/м. Найти величину заряда q.
- 7. Первоначально источник ЭДС был подключен к точкам 0 и 1 цепи из четырех одинаковых конденсаторов с ёмкостью C=3 мк Φ каждый. После того, как источник ЭДС подключили к точкам 0 и 2, суммарная энергия конденсаторов уменьшилась на величину $\Delta W=8$ Дж . Найти величину ЭДС ϵ .

8. Частицы "1" и "2" с разными массами и зарядами движутся в перпендикулярном к траекториям их движения однородном постоянном магнитном поле. Отношения радиусов кривизны этих траекторий и величин скоростей частиц равны $R_1/R_2 = 2,25\,$ и $v_1/v_2 = 9\,$. Каким будет отношение $a_1/a_2\,$ величин ускорения таких частиц, если вместо магнитного включить однородное постоянное электрическое поле?

9. Плоскость проводящего кругового витка радиуса r=3 см перпендикулярна к линиям индукции однородного магнитного поля \vec{B} . Найти величину ЭДС электромагнитной индукции, созданной в таком витке, если величина B меняется со временем по линейному закону (см. рисунок).

10. Расстояние между двумя точечными источниками света $\ell=24\,\mathrm{cm}$. Линза находится между источниками на расстоянии 6 см от первого источника. Чему равно фокусное расстояние линзы, если изображения источников совпали.

Ответы:

1	2	3	4	5	6	7	8	9	10
7,8 м	8 м	$\alpha = \frac{\pi}{6}$	$\frac{3}{4}\sqrt{\frac{3}{2}}$	18,6 кДж	q=1 мкКл	4000 B	4	0,03768 B	9 см