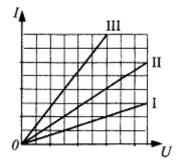

Материальные точки 1, 2, 3 и 4 свободно падают в вакууме в поле положительно заряженной сферы. Какие точки имеют положительный заряд?

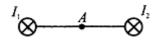


В ответе запишите номера правильных ответов без знаков препинания и пробелов в порядке возрастания номеров.

- 1. только 1
- 2. только 2
- 3. только 3
- 4. только 4
- 5. точки 1 и 2
- 6. точки 1 и 3
- 7. точки 1 и 4
- 8. точки 2 и3
- 9. точки 2 и 4
- 10. точки 3 и 4

2. Задача 2*

По данной вольт-амперной характеристике сравните диаметры графитовых стержней I и III одинаковой длины.


диаметр	стержня І бол	ьше диамет	ра стержня]	III в два раза
диаметр	стержня І мен	ньше диамет	гра стержня	III в два раза
диаметр	стержня І бол	ьше диамет	ра стержня]	III в 1,4 раза
диаметр	стержня І мен	ньше диамет	гра стержня	III в 1,4 раза
диаметр	стержня І бол	ьше диамет	ра стержня]	III в 4 раза
диаметр	стержня І мен	ньше диамет	гра стержня	III в 4 раза

Электрическая цепь из трех последовательно соединенных резисторов сопротивлениями 3 Ом, 6 Ом и 9 Ом подключена к источнику тока с внутренним сопротивлением 1 Ом. Через сколько секунд в источнике тока выделится 4 Дж теплоты, если на резисторе сопротивлением 9 Ом падение напряжения 18 В?

1	через 0,25 секунды
2	через 0,5 секунды
3	через 1 секунду
4	через 2 секунды
5	через 4 секунды
6	через 8 секунд

4. Задача 4

По двум параллельным тонким проводникам большой длины текут токи I_1 и I_2 , причем, ток $I_1 = 2$ I_2 . Посередине отрезка между проводниками находится точка A. Определите направление вектора магнитной индукции B магнитного поля в этой точке.

1 вектор **В** направлен вверх

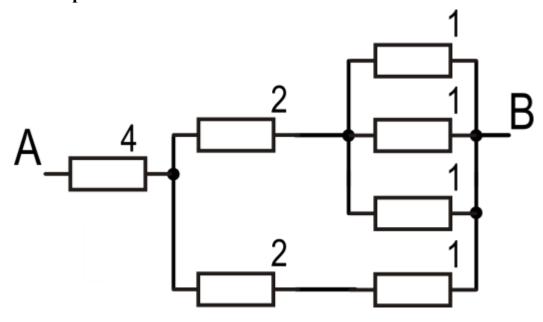
2	вектор B направлен вниз
3	вектор B направлен влево
4	вектор \boldsymbol{B} направлен вправо
5	вектор B направлен на нас
6	вектор B направлен от нас
7	магнитное поле в точке A отсутствует, т.к. токи текут в одном направлении от нас

Для двух источников питания постоянного тока измерены значения выходного тока и напряжения при различных значениях нагрузки.

Источник 1

I, A	3,98	3,03	2,05
U, B	0,04	0,74	1,51

Источник 2

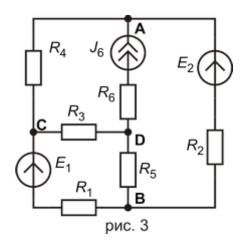

I, A	1,85	1,81	1,55
U, B	0,55	1,01	2,55

Определить, какой из двух источников питания имеет большую номинальную э.д.с.

1	Источник 1
2	Источник 2
3	Э. д. с. источников одинаковая

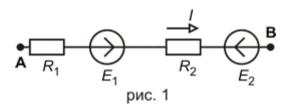
6. Задача 6

На данной схеме значения сопротивлений указаны в омах. Эквивалентное сопротивление между точками А и В равно ...



1	12 Ом
2	5,3 Ом
3	1,33 Ом
4	5,88 Ом

7. Задача 7*


В заданной схеме E1=10 B, E2=5 B, R1=R2=R3=R4=R6=1 кОм, J1=1 мА. Внутренние сопротивления элементов E1 и E2 считать очень малыми, элемента J1 очень большим.

Эквивалентное сопротивление RCB схемы между точками C и B равно ...

1	0,62 кОм
2	0,5 кОм
3	1 кОм
4	3 кОм

На рисунке изображён участок некоторой цепи. Известны потенциалы точек A и B: $\phi_A = 5$ B, $\phi_B = 40$ B. Элементы цепи имеют номиналы: $R_I = 8$ Ом, $R_2 = 2$ Ом, $E_I = 15$ B, $E_2 = 25$ B. Ток I равен ...

1	8,5 A
2	7,5 A
3	-14,4 A
4	-4,5 A

9. Задача 9

Переведите число 357А74А11 в двоичную систему счисления.

1	10111010110100111011101
2	101011100101001010111100
3	10111100010100111011100
4	10111110010100111011100
5	10111110010100011011100

10. Задача 10

Какая таблица истинности соответствует логической операции «И-НЕ»?

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

1

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

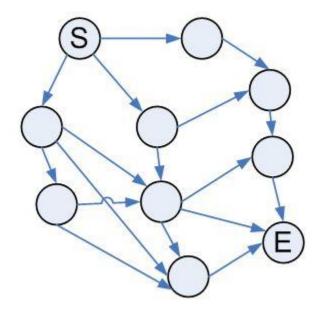
3

1	
-	t

1	Таблица 1
2	Таблица 2
3	Таблица 3
4	Таблица 4
5	Ни одна из таблиц

11. Задача 11

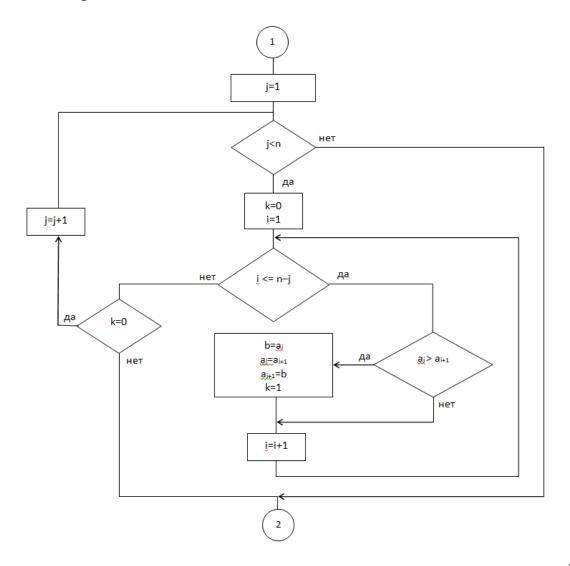
Сколько значащих единиц в двоичной записи числа 8^21-4^18+2^20?


1	25
2	28
3	30
4	32
5	35

Чему равен результат вычисления 106258-215226 в троичной системе счисления?

1	2002000
2	2001112
3	2001011
4	2000220
5	2001121

13. Задача 13*


Найти количество путей из начального пункта (S) в конечный (E).

1	10
2	13
3	18
4	11
5	20

14. Задача 14

По представленной блок-схеме определить реализованный алгоритм.

1	Добавление заданной последовательности элементов в массив
2	Сортировка элементов массива
3	Замена заданной последовательности элементов в массиве
4	Удаление заданной последовательности элементов в массиве
5	Поиск заданной последовательности элементов в массиве

Николай пользуется услугами различных банков. В результате у него накопилось много различных карт. На каждой карте установлен уникальный пин-код из 4-х цифр. Николаю лень запоминать все пин-коды, поэтому он заучил всего один мастер-код и на всех картах написал пин-коды по следующей схеме: 1) Если цифра мастер-кода больше соответствующей цифры пин-кода, то он писал их разницу с подчеркиванием снизу; 2) Если цифра мастер-кода меньше либо равна соответствующей цифре пин-кода, то он писал их разницу без подчеркивания.

Например, если бы мастер-код был 1234, а пин-код – 5914, то на карте Николай написал бы следующее: 4720.

Девушка Николая Светлана считает такой способ кодирования небезопасным и решила это доказать, раскодировав пин-код на его зарплатной карте. Мастеркод она не знает, закодированный пинкод написан на карте. Светлана невезучая, ей не удастся угадать пин-код случайным образом; пин-коды она набирает не подряд, но не повторяется; т.е. ей придется перебрать все возможные варианты пока она не найдет верный. Посчитайте, сколько вариантов ей придется перебрать, в случае если на карте написан код 3799:

1	1
2	33
3	12
4	21
5	18

16. Задача 16

Какое будет содержимое массива **mas** после выполнения следующего фрагмента кода?

C++:

```
void f1(int* A, int N)
    □ {
 2
 3
          int i = 0;
          while(i < N)
 4
    5
              if(i == 0 || A[i - 1] <= A[i]) ++i;
 6
 7
              else
 8
    {
 9
                  int Temp = A[i];
                  A[i] = A[i - 1];
10
                  A[i - 1] = Temp;
11
                  --i;
12
13
14
15
16
17
      int mas[5] = \{7, 12, -5, -2, 0\};
      f1(mas,4);
18
19
```

Pascal:

```
1
      type my_array=array[1..5] of integer;
 2
      var mas: my_array;
 3
          n,i: integer;
 4
 5
      procedure f1(var arr:my_array; size : Integer);
 6
      var i, j, t : Integer;
 7
    □begin
 8
          i := 2;
 9
          j := 3;
10
          while i <= size do
11
               begin
12
                     if arr[i-1] <= arr[i] then</pre>
    \dot{\Box}
13
                          begin
14
                               i := j;
                               j := j + 1
15
16
                          end
17
                     else
    白
18
                     begin
19
                           t := arr[i-1];
                           arr[i-1] := arr[i];
20
21
                           arr[i] := t;
22
                           i := i - 1;
23
                         if i = 1 then
24
                         begin
25
                               i := j;
26
                               j := j + 1;
27
                         end
28
                 end
29
           end;
30
      end;
31
32
33
          mas[1]:=7; mas[2]:=12; mas[3]:=-5; mas[4]:=-2; mas[5]:=0;
34
          f1(mas, 4);
35
      -5 -2 7 12 0
1
2
      -5 -2 0 7 12
3
      -5 -2 7 12 0
4
      0 -5 -2 7 12
5
      12 7 0 -2 -5
```