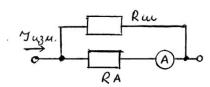
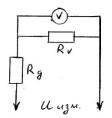
<u>РЕШЕНИЕ ЗАДАЧ ВТОРОГО ТУРА ОЛИМПИАДЫ ПО ЭЛЕКТРОНИКЕ</u>

<u> 10 КЛАСС</u>

1. Применение различных шунтов и добавочных сопротивлений позволяют использовать миллиамперметр как для измерения токов в различных цепях электронных схем, так и напряжений. Если к миллиамперметру, рассчитанному на измерение максимальной силы тока 2 мА, подключить шунт сопротивлением 5 Ом, то цена деления шкалы прибора увеличится в 10 раз. Какое добавочное сопротивление необходимо подключить к миллиамперметру, чтобы его можно было бы использовать как вольтметр для измерения напряжений до 20 В?

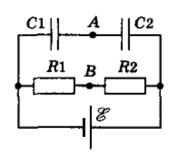

РЕШЕНИЕ:


Дано: $I_A = 2$ мA, $R_{uu} = 5$ Ом, $I_{u_{3M}} = 10I_A$, $U_{u_{3M}} = 20$ В.

 $R_{\partial o \delta}$. -?

Как видно из схемы подключения шунта, при измеряемом токе $I_{u_{3M.}}=20$ мA, через миллиамперметр течет ток $I_A=2$ мA, а через шунт – ток шунта $I_{u.}=I_{u_{3M.}}-I_A=18$ мA, т.е. $9I_A$. Падения напряжений на сопротивлении шунта $R_{u.}$ и на сопротивлении амперметра R_A равны:

 $I_A \cdot R_A = I_{u.} \cdot R_{u.} = 9I_A \cdot R_{u.}$. Значит $R_A = 9R_{u.} = 45 \text{ Om.}$

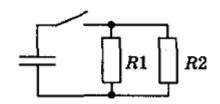


При измерении напряжений сопротивление вольтметра R_V равно сопротивлению миллиамперметра R_A , ток протекающий через вольтметр соответствует току миллиамперметра I_A . Следовательно, падение напряжения на внутреннем сопротивлении вольтметра R_V равно $U_V = I_A \cdot R_A = 0.09$ В. Значит, на добавочном сопротивлении падение напряжения равно $U_{\partial o \delta} = U_{u_{3M}} - U_V = 20 - 0.09 = 19.91$ В. Значит, $R_{\partial o \delta} = U_{\partial o \delta} / I_A = 19.91 / 2 \cdot 10^{-3} = 9955$ Ом.

Ответ: необходимо подключить $R_{\partial o \delta} = 9955 \text{ Om.}$

2. На рисунке представлен участок схемы электронного прибора. Определите разность потенциалов между точками В и А. Параметры элементов схемы: резистор $R_I = 1$ Ом, резистор $R_2 = 10$ Ом, конденсатор $C_I = 1$ мк Φ , конденсатор $C_2 = 4$ мк Φ , ЭДС источника постоянного тока $\mathbf{E} = 10$ В. Внутренним сопротивлением источника пренебречь.

РЕШЕНИЕ:


Дано: $R_1 = 1$ Ом, $R_2 = 10$ Ом, $C_1 = 1$ мк $\Phi = 10^{-6}$ Ф, $C_2 = 4$ мк $\Phi = 4 \cdot 10^{-6}$ Ф, ЭДС источника E = 10 В, r = 0.

$$\Phi_B - \Phi_A - ?$$

Так как ток течет от положительного полюса источника к отрицательному, то примем за нуль потенциал отрицательного полюса. Из схемы видно, что $\phi_A = U_{Cl}$, $\phi_B = U_{Rl}$. Вычислим эти напряжения. Так как конденсаторы C_I и C_2 соединены последовательно, то их заряды равны, значит, $C_I U_{Cl} = C_2 U_{C2}$. Откуда следует, что $\frac{U_{C1}}{U_{C2}} = \frac{C_2}{C_1} = 4$. Значит, $U_{Cl} = 4$ U_{C2} . Из схемы видно, что $U_{Cl} + U_{C2} = E = 5U_{C2} = 10$ В, значит $U_{C2} = 2$ В, $U_{Cl} = \phi_A = 8$ В. Вычислим $\phi_B = U_{Rl} = \frac{E \cdot R_1}{R_1 + R_2} \approx 0,91$ В. Таким образом, $\phi_B - \phi_A = 0,91$ В - 8 В = -7,09 В.

Ответ: разность потенциалов $\phi_B - \phi_A = -7,09 \ B.$

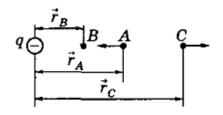
3. На рисунке показан конденсатор емкостью 200 мк Φ , заряженный от источника постоянного тока до напряжения 100 В. Конденсатор подключают с помощью ключа к двум параллельно соединенным резисторам сопротивлениями $R_I = 10$ Ом и $R_2 = 20$ Ом. Какое количество теплоты выделится на каждом резисторе при полной разрядке конденсатора?

РЕШЕНИЕ:

Дано:
$$C = 200$$
 мк $\Phi = 2 \cdot 10^{-4} \, \Phi$, $U_C = 100 \, \text{B}$, $R_I = 10 \, \text{Om}$, $R_2 = 20 \, \text{Om}$.

$$Q_1 - ?, Q_2 - ?.$$

Согласно закону сохранения энергии, энергия заряженного конденсатора перейдет в тепловую энергию, которая выделится на резисторах. Поэтому можно записать $\frac{CU_C^2}{2} = Q_1 + Q_2$, причем,


$$Q_1 = I_1^2 \cdot R_1 \cdot t$$
, $Q_2 = I_2^2 \cdot R_2 \cdot t$. Вычислим $\frac{Q_1}{Q_2} = \frac{I_1^2 \cdot R_1}{I_2^2 \cdot R_2}$. Так как резисторы включены параллельно, то

$$I_{I}R_{I}=I_{2}R_{2}$$
, откуда $I_{1}=rac{I_{2}R_{2}}{R_{1}}$. Поэтому $rac{Q_{1}}{Q_{2}}=rac{I_{2}^{2}\cdot R_{2}^{2}\cdot R_{1}}{R_{1}^{2}\cdot I_{2}^{2}\cdot R_{2}}=rac{R_{2}}{R_{1}}=2$, откуда следует, что $Q_{I}=2$ Q_{2} ,

поэтому
$$3Q_2 = \frac{CU_C^2}{2} = \frac{2 \cdot 10^{-4} \cdot 10^4}{2} = 1$$
 Дж. Значит, $Q_2 = 1/3$ Дж, $Q_I = 2/3$ Дж.

Ответ: на резисторе R_1 выделится теплоты $Q_1 = 2/3$ Дж, на резисторе $R_2 - Q_2 = 1/3$ Дж/

4. В некоторой точке вакуумного электронного прибора находится неподвижный точечный заряд q=-0,1 нКл. Электрон, приближаясь к заряду, в точке A, удаленной от заряда на расстояние $r_A=0,2$ м, имеет скорость $v=10^6$ м/с. На какое минимальное расстояние r_B электрон сможет приблизиться к заряду? Какой будет скорость электрона в точке C, удаленной от заряда на расстояние $r_C=0,5$ м?

РЕШЕНИЕ:

Дано:
$$q = -0.1$$
 нКл $= 10^{-10}$ Кл, $r_A = 0.2$ м, $v = 10^6$ м/с, $r_c = 0.5$ м.

$$r_{B} - ? v_{C} - ?$$

Так как электрон движется в направлении силовых линий электрического поля к отрицательному заряду q, то его кинетическая энергия $W_{\text{кин.}}$ убывает и в точке B будет равна нулю, значит потенциальная энергия электрона в точке B $W_{B \text{ пот.}}$ увеличивается по сравнению с потенциальной энергией в точке A $W_{A \text{ пот.}}$ на величину кинетической энергии в точке A $W_{A \text{ кин.}}$

Поэтому можно записать:
$$W_{\text{В пот.}} = W_{\text{Апот.}} + W_{\text{А кин.}}$$
. $W_{\text{В пот.}} = \phi_{\text{В}} \cdot q_{\text{e}} = \frac{kqq_{e}}{r_{\text{B}}} = \frac{m_{e}v_{\text{A}}^{2}}{2} + \frac{kqq_{e}}{r_{\text{A}}}$, откуда

следует, что

$$r_{\scriptscriptstyle B} = \frac{kqq_{\scriptscriptstyle e}}{\frac{m_{\scriptscriptstyle e}v_{\scriptscriptstyle A}^2}{2} + \frac{kqq_{\scriptscriptstyle e}}{r_{\scriptscriptstyle A}}} = \frac{2r_{\scriptscriptstyle A}kqq_{\scriptscriptstyle e}}{r_{\scriptscriptstyle A}m_{\scriptscriptstyle e}v_{\scriptscriptstyle A}^2 + 2kqq_{\scriptscriptstyle e}} = \frac{2\cdot 0.2\cdot 9\cdot 10^9\cdot 10^{-10}\cdot 1.6\cdot 10^{-19}}{0.2\cdot 9.1\cdot 10^{-31}\cdot 10^{12} + 2\cdot 9\cdot 10^9\cdot 10^{-10}\cdot 1.6\cdot 10^{-19}} \approx 0.123~\text{m}.$$

После остановки в точке В, электрон движется против силовых линий к точке С, поэтому его кинетическая энергия возрастает и в точке С будет равна уменьшению потенциальной энергии

по сравнению с точкой В: $W_{C \text{ кин.}} = q_e \left(\phi_B - \phi_C \right) = \frac{m_e v_C^2}{2}$, откуда следует, что

$$v_C = \sqrt{\frac{2W_{Cnno.}}{m_e}} = \sqrt{\frac{2q_e kq(\frac{1}{r_B} - \frac{1}{r_C})}{m_e}} = 1,41 \cdot 10^6 \text{ m/c}.$$

Ответ: электрон сможет приблизиться к заряду на минимальное расстояние $r_B \approx 0,123$ м, скорость электрона в точке C равна $v_C = 1,41 \cdot 10^6$ м/с.

5. Во внешнем однородном поле напряженностью E находится незаряженный плоский воздушный конденсатор. Площадь каждой пластины конденсатора равна S. Силовые линии электрического поля перпендикулярны пластинам. Какой заряд q окажется на каждой пластине конденсатора, если их накоротко замкнуть проводником?

РЕШЕНИЕ:

На пластинах незаряженного конденсатора будут индуцироваться заряды, поверхностная плотность которых равна $\sigma = q/S$. Поверхностная плотность заряда пластины зависит от

напряженности электрического поля $E=\frac{\sigma}{2\varepsilon_o}=\frac{q}{2S\varepsilon_o}$. Замыкание пластин конденсатора накоротко проводником приведет к увеличению площади заряда в 2 раза, т.к. любой проводник делает соединенные поверхности эквипотенциальными. Поэтому можно записать: $E=\frac{q}{2\varepsilon_o S}+\frac{q}{2\varepsilon_o S}=\frac{q}{\varepsilon_o S}$. Откуда следует, что $q=\varepsilon_o SE$.

Ответ: на каждой пластине конденсатора окажется заряд $q = \varepsilon_a SE$.

6. В экспериментальной установке имеется стеклянный сосуд из которого выкачан воздух. В сосуде вдоль своей оси вращения перемещается металлическая пластина-мембрана. Предложите способ бесконтактного измерения расстояния от стенки сосуда до мембраны. Нарушать вакуум и вносить механические элементы внутрь сосуда нельзя.

PEHIEHNE:

Перед нами типичная инженерная задача, для решения которой необходимо вспомнить, какие параметры меняются при движении мембраны? Один из приемлемых вариантов решения – измерять расстояние по изменению электрической емкости конденсатора, образованного подвижной мембраной и неподвижной стенкой сосуда (туда нужно поместить вторую обкладку). Также вполне применим оптический способ измерения расстояния. Оценивается оригинальность подхода и наличие вариантов решения.

7. При разработке интерактивной системы возникла необходимость изготовить датчик, способный на расстоянии (0,5...1м) определить присутствие человека. Предложите устройство оригинального датчика, при условии, что ультразвуковые и инфракрасные излучатели использовать нельзя.

РЕШЕНИЕ:

Один из возможных способов — использовать датчик изменения электрической емкости. Подобный эффект заложен в принцип работы интересного музыкального инструмента — терменвокса. Оценивается оригинальность подхода и наличие вариантов решения.